login
A224190
T(n,k) = Number of n X k 0..2 arrays with rows unimodal and columns nondecreasing.
11
3, 9, 6, 22, 36, 10, 46, 158, 100, 15, 86, 548, 684, 225, 21, 148, 1600, 3526, 2205, 441, 28, 239, 4102, 14751, 15779, 5852, 784, 36, 367, 9503, 52591, 89380, 55438, 13524, 1296, 45, 541, 20299, 165212, 422488, 408222, 163746, 28176, 2025, 55, 771, 40570
OFFSET
1,1
COMMENTS
Table starts
..3....9.....22......46.......86........148.........239..........367
..6...36....158.....548.....1600.......4102........9503........20299
.10..100....684....3526....14751......52591......165212.......468292
.15..225...2205...15779....89380.....422488.....1727738......6272940
.21..441...5852...55438...408222....2469182....12741432.....57644194
.28..784..13524..163746..1519738...11444292....72710554....400958714
.36.1296..28176..424326..4844576...44435746...340780382...2249643632
.45.2025..54153..992607.13669953..150015321..1366188661..10635858679
.55.3025..97570.2138488.34953776..452158538..4823267213..43724068755
.66.4356.166738.4305730.82399174.1240740774.15322738603.159999462711
LINKS
FORMULA
Empirical: columns k=1..7 are polynomials of degree 2*k.
Empirical: rows n=1..7 are polynomials of degree 4*n.
EXAMPLE
Some solutions for n=3, k=4
..1..2..2..1....0..0..2..0....1..2..1..1....0..1..0..0....1..0..0..0
..1..2..2..1....1..2..2..0....1..2..1..1....0..1..2..0....1..1..0..0
..2..2..2..2....1..2..2..1....2..2..1..1....0..2..2..0....1..1..0..0
CROSSREFS
Column 1 is A000217(n+1).
Column 2 is A000537(n+1).
Row 1 is A223718.
Row 2 is A223919.
Row 3 is A223865.
Sequence in context: A096948 A224262 A223918 * A223815 A275414 A223309
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Apr 01 2013
STATUS
approved