The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A221179 A convolution triangle of numbers obtained from A146559. 0
 1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, -2, 1, 3, 1, 0, -4, -4, 3, 4, 1, 0, -4, -12, -5, 6, 5, 1, 0, 0, -16, -24, -4, 10, 6, 1, 0, 8, -4, -42, -39, 0, 15, 7, 1, 0, 16, 32, -24, -88, -55, 8, 21, 8, 1, 0, 16, 80, 72, -80 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS Triangle T(n,k) given by (0, 1, -1, 2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. LINKS FORMULA G.f. for the k-th column: ((x-x^2)/(1-2*x+2*x^2))^k. G.f.: (1-2*x+2*x^2)/(1-2*x+2*x^2-x*y+x^2*y). T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - 2*T(n-2,k) - T(n-2,k-1), T(0,0)=1, T(1,0) = T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n. T(n,k) = (-1)^(n-k)*A181472(n-1,k-1) for n>0 and k>0. T(n,1) = A146559(n-1). T(n+1,n) = n = A001477(n). T(n+2,n) = (n^2-n)/2 = A161680(n). Sum_{k, 0<=k<=n} T(n,k) = A057682(n) for n>0. EXAMPLE Triangle begins: 1 0, 1 0, 1, 1 0, 0, 2, 1 0, -2, 1, 3, 1 0, -4, -4, 3, 4, 1 0, -4, -12, -5, 6, 5, 1 0, 0, -16, -24, -4, 10, 6, 1 CROSSREFS Cf. A030523, A104597, A181472, A220399 Sequence in context: A333211 A258033 A153248 * A153247 A071432 A194508 Adjacent sequences:  A221176 A221177 A221178 * A221180 A221181 A221182 KEYWORD sign,tabl AUTHOR Philippe Deléham, Feb 20 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 07:44 EST 2020. Contains 338702 sequences. (Running on oeis4.)