The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A221178 Union of (prime powers minus 1) and values of Euler totient function. 2
 0, 1, 2, 3, 4, 6, 7, 8, 10, 12, 15, 16, 18, 20, 22, 24, 26, 28, 30, 31, 32, 36, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60, 63, 64, 66, 70, 72, 78, 80, 82, 84, 88, 92, 96, 100, 102, 104, 106, 108, 110, 112, 116, 120, 124, 126, 127, 128, 130, 132, 136, 138, 140, 144, 148, 150, 156, 160, 162, 164, 166, 168, 172, 176 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS FORMULA Union of A181062 and A002202. MATHEMATICA max = 200; selNu = Select[Range[max], PrimeNu[#] == 1&]-1; phiQ[m_] := Select[Range[m+1, 2*m*Product[1/(1-1/(k*Log[k])), {k, 2, DivisorSigma[0, m]}]], EulerPhi[#] == m&, 1] != {}; selPhi = Select[Range[max], phiQ]; Join[{0}, Union[selNu, selPhi]] PROG (PARI) list(lim)=my(P=1, q, v, u=List([0])); forprime(p=2, default(primelimit), if(eulerphi(P*=p)>=lim, q=p; break)); v=vecsort(vector(P/q*lim\eulerphi(P/q), k, eulerphi(k)), , 8); v=select(n->n<=lim, v); forprime(p=2, sqrtint(lim\1+1), P=p; while((P*=p) <= lim+1, listput(u, P-1))); vecsort(concat(v, Vec(u)), , 8) \\ Charles R Greathouse IV, Jan 08 2013 CROSSREFS Cf. A000010, A002202, A000961, A181062, A070932 (multiplicative closure). Sequence in context: A335042 A257282 A336488 * A080389 A226038 A181062 Adjacent sequences:  A221175 A221176 A221177 * A221179 A221180 A221181 KEYWORD nonn AUTHOR Jean-François Alcover, Jan 06 2013 EXTENSIONS Edited by N. J. A. Sloane, Jan 06 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 25 13:38 EST 2020. Contains 338623 sequences. (Running on oeis4.)