OFFSET
1,1
COMMENTS
All terms are primes.
Up to a(97)=2333, only four terms of the sequence (a(33)=643, a(34)=673, a(76)=1721 and a(77)=1741) are not (3/2)-Ramanujan numbers as in Shevelev's link; up to 2333, the only (3/2)-Ramanujan numbers missing from the sequence are 2, 617, 653, 709, 1709, 1733, and 1747.
LINKS
N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, J. Sondow, Generalized Ramanujan primes, arXiv 2011.
N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, J. Sondow, Generalized Ramanujan primes, Combinatorial and Additive Number Theory, Springer Proc. in Math. & Stat., CANT 2011 and 2012, Vol. 101 (2014), 1-13
V. Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012) Article 12.5.4
Vladimir Shevelev, Charles R. Greathouse IV, Peter J. C. Moses, On intervals (kn, (k+1)n) containing a prime for all n>1, Journal of Integer Sequences, Vol. 16 (2013), Article 13.7.3. arXiv:1212.2785
FORMULA
a(n)<=prime(4*(n+1)).
MATHEMATICA
(* Assuming range of x is from a(n) to 2*a(n) *) theta[x_] := Sum[Log[p], {p, Table[Prime[k], {k, 1, PrimePi[x]}]}]; Clear[a]; a[0] = 2; a[n_] := a[n] = (t = Table[{an, x >= an && theta[x] - theta[2*(x/3)] >= n*Log[x]}, {an, a[n - 1], Prime[4*(n + 1)]}, {x, an, 2*an}]; sp = t // Flatten[#, 1] & // Sort // Split[#, #1[[1]] == #2[[1]] &] &; Select[sp, And @@ (#[[All, 2]]) &] // First // First // First); Table[Print[a[n]]; a[n], {n, 1, 51}] (* Jean-François Alcover, Jan 24 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved