login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220462
Chebyshev numbers C_v(n) for v=3/2: a(n) is the smallest number such that if x>=a(n), then theta(x)-theta(2*x/3)>=n*log(x), where theta(x) = sum_{prime p<=x} log p.
2
13, 37, 41, 67, 73, 97, 127, 137, 173, 179, 181, 211, 229, 239, 263, 307, 311, 347, 367, 379, 431, 433, 443, 449, 479, 487, 541, 563, 587, 599, 607, 641, 643, 673, 739, 757, 787, 797, 809, 823, 827, 859, 937, 967, 997, 1019, 1031, 1039, 1049, 1061, 1087
OFFSET
1,1
COMMENTS
All terms are primes.
Up to a(97)=2333, only four terms of the sequence (a(33)=643, a(34)=673, a(76)=1721 and a(77)=1741) are not (3/2)-Ramanujan numbers as in Shevelev's link; up to 2333, the only (3/2)-Ramanujan numbers missing from the sequence are 2, 617, 653, 709, 1709, 1733, and 1747.
LINKS
N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, J. Sondow, Generalized Ramanujan primes, arXiv 2011.
N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, J. Sondow, Generalized Ramanujan primes, Combinatorial and Additive Number Theory, Springer Proc. in Math. & Stat., CANT 2011 and 2012, Vol. 101 (2014), 1-13
V. Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012) Article 12.5.4
Vladimir Shevelev, Charles R. Greathouse IV, Peter J. C. Moses, On intervals (kn, (k+1)n) containing a prime for all n>1, Journal of Integer Sequences, Vol. 16 (2013), Article 13.7.3. arXiv:1212.2785
FORMULA
a(n)<=prime(4*(n+1)).
MATHEMATICA
(* Assuming range of x is from a(n) to 2*a(n) *) theta[x_] := Sum[Log[p], {p, Table[Prime[k], {k, 1, PrimePi[x]}]}]; Clear[a]; a[0] = 2; a[n_] := a[n] = (t = Table[{an, x >= an && theta[x] - theta[2*(x/3)] >= n*Log[x]}, {an, a[n - 1], Prime[4*(n + 1)]}, {x, an, 2*an}]; sp = t // Flatten[#, 1] & // Sort // Split[#, #1[[1]] == #2[[1]] &] &; Select[sp, And @@ (#[[All, 2]]) &] // First // First // First); Table[Print[a[n]]; a[n], {n, 1, 51}] (* Jean-François Alcover, Jan 24 2013 *)
CROSSREFS
Cf. A220293.
Sequence in context: A088963 A301591 A301857 * A280997 A185006 A285887
KEYWORD
nonn
STATUS
approved