login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A220293 Chebyshev numbers C_2(n): a(n) is the smallest number such that if x >= a(n), then theta(x) - theta(x/2) >= n*log(x), where theta(x) = sum_{prime p <= x} log p. 4
11, 17, 29, 41, 47, 59, 67, 71, 97, 101, 107, 127, 149, 151, 167, 179, 223, 229, 233, 239, 241, 263, 269, 281, 307, 311, 347, 349, 367, 373, 401, 409, 419, 431, 433, 443, 461, 487, 503, 569, 571, 587, 593, 599, 601, 607, 641, 643, 647, 653 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Up to a(100)=1489, only two terms of the sequence (a(17)=223 and a(36)=443) are not Ramanujan numbers (A104272), and the sequence is missing only the following Ramanujan numbers up to 1489: 2, 181, 227, 439, 491, 1283, and 1301. The latter observation shows how closely the ratio theta(x)/log(x) approximates the number of primes <= x (i.e., pi(x)).
A generalization: for a real number v>1, the v-Chebyshev number C_v(n) is the smallest integer k such that if x>=k, then theta(x)-theta(x/v)>=n*log x. In particular, a(n)=C_2(n). For another example, if v=4/3, then, at least up to 3319, all (4/3)-Chebyshev numbers are (4/3)-Ramanujan primes as in Shevelev's link (cf. A193880, where c=1/v=3/4 is excepted), and in this case the sequence is missing only the following (4/3)-Ramanujan numbers up to 3319: 11 and 1567.
Like Chebyshev numbers, all v-Chebyshev numbers are primes.
LINKS
N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, and J. Sondow, Generalized Ramanujan primes, arXiv 2011.
N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, J. Sondow, Generalized Ramanujan primes, Combinatorial and Additive Number Theory, Springer Proc. in Math. & Stat., CANT 2011 and 2012, Vol. 101 (2014), 1-13
V. Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012) Article 12.5.4
Vladimir Shevelev, Charles R. Greathouse IV, and Peter J. C. Moses, On intervals (kn, (k+1)n) containing a prime for all n>1, Journal of Integer Sequences, Vol. 16 (2013), Article 13.7.3. arXiv:1212.2785
FORMULA
For n >= 2, A104272(n) <= a(n-1) <= prime(3n).
CROSSREFS
Cf. A104272.
Sequence in context: A225493 A051634 A038918 * A166307 A128464 A105170
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 14:10 EDT 2024. Contains 371792 sequences. (Running on oeis4.)