login
A088963
Primes p such that 5p is the hypotenuse belonging to two prime-free primitive Pythagorean triples.
1
13, 37, 41, 61, 73, 89, 97, 101, 109, 113, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 293, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433, 457, 461, 509, 521, 541, 557, 569, 577, 593, 601, 613, 617, 641, 653, 661, 673, 677, 701
OFFSET
1,1
COMMENTS
Subsequence of A002144.
EXAMPLE
41 is in the sequence because 5*41=205 appears in the two prime-free primitive Pythagorean triangles: (123^2 + 164^2 = 205^2),(133^2 + 156^2 = 205^2).
CROSSREFS
Sequence in context: A118361 A264908 A281004 * A301591 A301857 A220462
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, Oct 28 2003
EXTENSIONS
More terms from Ray Chandler, Oct 31 2003
STATUS
approved