OFFSET
0,1
COMMENTS
Equals Integral_{x>=0} sin(x^2) dx.
The generalizations are Integral_{x>=0} exp(i*x^n) dx =
0.6266570686577501... + i*0.6266570686577501... for n=2,
0.7733429420779898... + i*0.4464897557846246... for n=3,
0.8374066967690864... + i*0.3468652110238094... for n=4,
0.8732303655178185... + i*0.2837297451053993... for n=5,
and
Gamma(1/n)*i^(1/n)/n in general, where i is the imaginary unit. - R. J. Mathar, Nov 14 2012
Mean of cycle length (and of tail length) in Pollard rho method for factoring n is sqrt(2*Pi)/4*sqrt(n). - Jean-François Alcover, May 27 2013
If m = (1/2) * sqrt(Pi/2), then the coordinates of the two asymptotic points of the Cornu spiral (also called clothoide) and whose Cartesian parametrization is: x = a * Integral_{0..t} cos(u^2) du and y = a * Integral_{0..t} sin(u^2) du are (a*m, a*m) and (-a*m, -a*m) (see the curve at the MathCurve link). - Bernard Schott, Mar 02 2020
Equals the limit as x approaches infinity of the Fresnel integrals Integral_{0..x} sin(t^2) dt and Integral_{0..x} cos(t^2) dt. - Bernard Schott, Mar 05 2020
LINKS
Muniru A Asiru, Table of n, a(n) for n = 0..2000
Robert Ferréol, Cornu spiral, Mathcurve.
I. S. Gradsteyn and I. M. Ryzhik, Table of integrals, series and products, (1980), page 420 (formulas 3.757.1, 3.757.2).
Paul J. Nahin, Inside interesting integrals, Undergrad. Lecture Notes in Physics, Springer (2020), (6.4.7)
Wikipedia, Fresnel Integral
FORMULA
From A.H.M. Smeets, Sep 22 2018: (Start)
Equals Integral_{x >= 0} sin(4x)/sqrt(x) dx [see Gradsteyn and Ryzhik].
Equals Integral_{x >= 0} cos(4x)/sqrt(x) dx [see Gradsteyn and Ryzhik]. (End)
From Bernard Schott, Mar 02 2020: (Start)
Equals Integral_{x >= 0} cos(x^2) dx or Integral_{x >= 0} sin(x^2) dx.
Equals sqrt(Pi/8) or (1/2)*sqrt(Pi/2). (End)
MAPLE
evalf(sqrt(2*Pi))/4 ;
MATHEMATICA
First@ RealDigits[N[Sqrt[2 Pi]/4, 105]] (* Michael De Vlieger, Sep 24 2018 *)
PROG
(Maxima) fpprec : 100; ev(bfloat(sqrt(2*%pi)))/4; /* Martin Ettl, Oct 04 2012 */
(Sage) ((sqrt(2*pi))/4).n(digits=100) # Jani Melik, Oct 05 2012
(PARI) sqrt(2*Pi)/4 \\ Altug Alkan, Sep 08 2018
(Magma) Sqrt(2*Pi(RealField(100)))/4; // G. C. Greubel, Sep 30 2018
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
R. J. Mathar, Oct 04 2012
STATUS
approved