

A216885


Primes p such that x^47 = 2 has a solution mod p.


2



2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Complement of A059257 relative to A000040.
a(n) = A015919(n+1) up to n=60, and then both sequences start to differ substantially. [Bruno Berselli, Sep 20 2012]


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000


MATHEMATICA

ok[p_] := Reduce[Mod[x^47  2, p] == 0, x, Integers] =!= False; Select[Prime[Range[100]], ok]


PROG

(MAGMA) [p: p in PrimesUpTo(500)  exists(t){x: x in ResidueClassRing(p)  x^47 eq 2}];


CROSSREFS

Sequence in context: A216884 * A216886 A273960 A100726 A015919 A064555
Adjacent sequences: A216882 A216883 A216884 * A216886 A216887 A216888


KEYWORD

nonn,easy


AUTHOR

Vincenzo Librandi, Sep 20 2012


STATUS

approved



