login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015919 Positive integers n such that 2^n == 2 (mod n). 30
1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 341, 347, 349, 353, 359, 367 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Includes 341 which is first pseudoprime to base 2 and distinguishes sequence from A008578.

First composite even term is a(14868) = 161038 = A006935(2). - Max Alekseyev, Feb 11 2015

If n is a term, then so is 2^n - 1. - Max Alekseyev, Sep 22 2016

Terms of the form 2^k - 2 correspond to k in A296104. - Max Alekseyev, Dec 04 2017

If 2^n-1 is a term, then so is n. - Thomas Ordowski, Apr 27 2018

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..20000

FORMULA

Equals {1} U A000040 U A001567 U A006935 = A001567 U A006935 U A008578. - Ray Chandler, Dec 07 2003; corrected by Max Alekseyev, Feb 11 2015

MATHEMATICA

Prepend[ Select[ Range@370, PowerMod[2, #, #] == 2 &], {1, 2}] // Flatten (* Robert G. Wilson v, May 16 2018 *)

PROG

(PARI) is(n)=Mod(2, n)^n==2 \\ Charles R Greathouse IV, Mar 11 2014

CROSSREFS

Contains A002997 as a subsequence.

The odd terms form A176997.

Cf. A000040, A001567, A008578.

Sequence in context: A216886 A273960 A100726 * A324050 A064555 A216887

Adjacent sequences:  A015916 A015917 A015918 * A015920 A015921 A015922

KEYWORD

nonn

AUTHOR

Robert G. Wilson v

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 9 14:56 EDT 2020. Contains 335543 sequences. (Running on oeis4.)