|
|
A059257
|
|
Primes p such that x^47 = 2 has no solution mod p.
|
|
2
|
|
|
283, 659, 941, 1129, 1223, 1693, 1787, 2069, 2351, 2539, 2633, 3761, 4231, 4513, 4889, 5077, 5171, 5641, 5923, 6299, 6581, 6863, 7333, 8179, 8273, 8461, 8837, 9871, 10247, 10529, 11093, 11657, 11939, 12409, 12503, 12973, 13537, 13913, 14759
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Presumably this is also Primes congruent to 1 mod 47. - N. J. A. Sloane, Jul 11 2008. Not so! The smallest counterexample is 26227: 26227 == 1 (mod 47), but 131^47 == 2 (mod 26227), therefore this prime is not in the sequence. - Bruno Berselli, Sep 12 2012
All terms are 1 mod 94. - Charles R Greathouse IV, Sep 13 2012
Complement of A216885 relative to A000040. - Vincenzo Librandi, Sep 20 2012
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
|
|
MATHEMATICA
|
ok[p_]:= Reduce[Mod[x^47 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[1800]], ok] (* Vincenzo Librandi, Sep 20 2012 *)
|
|
PROG
|
(MAGMA) [p: p in PrimesUpTo(15000) | forall{x: x in ResidueClassRing(p) | x^47 ne 2}]; // Bruno Berselli, Sep 12 2012
(PARI) select(p->!ispower(Mod(2, p), 47), primes(3000)) \\ Charles R Greathouse IV, Sep 13 2012
|
|
CROSSREFS
|
Cf. A000040, A058853.
Sequence in context: A142699 A113157 A142446 * A332676 A142837 A064964
Adjacent sequences: A059254 A059255 A059256 * A059258 A059259 A059260
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Klaus Brockhaus, Jan 23 2001
|
|
STATUS
|
approved
|
|
|
|