OFFSET
0,3
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Vaclav Kotesovec, Asymptotic solution of the equations using the Lambert W-function
FORMULA
O.g.f.: Sum_{n>=0} x^n / (1 - 2*n*x)^(n+1). - Paul D. Hanna, Aug 02 2014
a(n) = Sum_{k=0..n} binomial(n,k) * (2*k)^(n-k) for n>=0. - Paul D. Hanna, Aug 02 2014
From Vaclav Kotesovec, Aug 06 2014: (Start)
a(n) ~ n^n / (exp(2*n*r/(1+2*r)) * r^n * sqrt((1+6*r+4*r^2)/(1+2*r))), where r is the root of the equation r*(1+2*r)*exp(2*r) = n.
(a(n)/n!)^(1/n) ~ exp(1/(2*LambertW(sqrt(n/2)))) / LambertW(sqrt(n/2)).
(End)
MATHEMATICA
With[{nn = 25}, CoefficientList[Series[Exp[x Exp[x]^2], {x, 0, nn}], x] Range[0, nn]!] (* Bruno Berselli, Sep 14 2012 *)
PROG
(PARI)
x='x+O('x^66);
Vec(serlaplace(exp( x * exp(x)^2 )))
/* Joerg Arndt, Sep 14 2012 */
(PARI) /* From o.g.f.: */
{a(n)=local(A=1); A=sum(k=0, n, x^k/(1 - 2*k*x +x*O(x^n))^(k+1)); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", ")) /* Paul D. Hanna, Aug 02 2014 */
(PARI) /* From binomial sum: */
{a(n)=sum(k=0, n, binomial(n, k)*(2*k)^(n-k))}
for(n=0, 30, print1(a(n), ", ")) /* Paul D. Hanna, Aug 02 2014 */
CROSSREFS
Cf. A240165 (e.g.f. exp(x*(1+exp(x)^2))).
KEYWORD
nonn,changed
AUTHOR
Joerg Arndt, Sep 14 2012
STATUS
approved