login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A216689 E.g.f. exp( x * exp(x)^2 ). 9
1, 1, 5, 25, 153, 1121, 9373, 87417, 898033, 10052353, 121492341, 1573957529, 21729801481, 318121178337, 4917743697805, 79981695655801, 1364227940101857, 24335561350365953, 452874096174214117, 8772713803852981785, 176541611843378273401, 3684142819311127955041, 79596388271096140589949 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Vaclav Kotesovec, Asymptotic solution of the equations using the Lambert W-function

FORMULA

O.g.f.: Sum_{n>=0} x^n / (1 - 2*n*x)^(n+1). - Paul D. Hanna, Aug 02 2014

a(n) = Sum_{k=0..n} binomial(n,k) * (2*k)^(n-k) for n>=0. - Paul D. Hanna, Aug 02 2014

From Vaclav Kotesovec, Aug 06 2014: (Start)

a(n) ~ n^n / (exp(2*n*r/(1+2*r)) * r^n * sqrt((1+6*r+4*r^2)/(1+2*r))), where r is the root of the equation r*(1+2*r)*exp(2*r) = n.

(a(n)/n!)^(1/n) ~ exp(1/(2*LambertW(sqrt(n/2)))) / LambertW(sqrt(n/2)).

(End)

MATHEMATICA

With[{nn = 25}, CoefficientList[Series[Exp[x Exp[x]^2], {x, 0, nn}], x] Range[0, nn]!] (* Bruno Berselli, Sep 14 2012 *)

PROG

(PARI)

x='x+O('x^66);

Vec(serlaplace(exp( x * exp(x)^2 )))

/* Joerg Arndt, Sep 14 2012 */

(PARI) /* From o.g.f.: */

{a(n)=local(A=1); A=sum(k=0, n, x^k/(1 - 2*k*x +x*O(x^n))^(k+1)); polcoeff(A, n)}

for(n=0, 25, print1(a(n), ", ")) /* Paul D. Hanna, Aug 02 2014 */

(PARI) /* From binomial sum: */

{a(n)=sum(k=0, n, binomial(n, k)*(2*k)^(n-k))}

for(n=0, 30, print1(a(n), ", ")) /* Paul D. Hanna, Aug 02 2014 */

CROSSREFS

Cf. A216507 (e.g.f. exp(x^2*exp(x)), A216688 (e.g.f. exp(x*exp(x^2))).

Cf. A000248 (e.g.f. exp(x*exp(x))), A003725 (e.g.f. exp(x*exp(-x))).

Cf. A240165 (e.g.f. exp(x*(1+exp(x)^2)).

Sequence in context: A047782 A106565 A200031 * A297589 A092166 A204209

Adjacent sequences:  A216686 A216687 A216688 * A216690 A216691 A216692

KEYWORD

nonn

AUTHOR

Joerg Arndt, Sep 14 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 02:01 EDT 2020. Contains 334581 sequences. (Running on oeis4.)