login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106565 a(n) = 5*a(n-1) + 5*a(n-2) with a(0) = 0, a(1) = 5. 3
0, 5, 25, 150, 875, 5125, 30000, 175625, 1028125, 6018750, 35234375, 206265625, 1207500000, 7068828125, 41381640625, 242252343750, 1418169921875, 8302111328125, 48601406250000, 284517587890625, 1665594970703125 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (5,5).

FORMULA

Equals 5*A057088(n). - T. D. Noe, Feb 17 2006

From Philippe Deléham, Nov 19 2008: (Start)

a(n) = 5*a(n-1) + 5*a(n-2), n > 1; a(0)=0, a(1)=5.

G.f.: 5*x/(1-5*x-5*x^2). (End)

a(n) = (1/6)*5^((n+1)/2)*((1-(-1)^n)*LucasL(2*n) + (1+(-1)^n)*sqrt(5)*

Fibonacci(2*n)). - G. C. Greubel, Sep 06 2021

MATHEMATICA

M={{0, 5}, {1, 5}}; v[1]={0, 1}; v[n_]:= v[n]= M.v[n-1]; Table[v[n][[1]], {n, 41}]

LinearRecurrence[{5, 5}, {0, 5}, 40] (* G. C. Greubel, Sep 06 2021 *)

PROG

(Magma) I:=[0, 5]; [n le 2 select I[n] else 5*(Self(n-1) +Self(n-2)): n in [1..41]]; // G. C. Greubel, Sep 06 2021

(Sage) [5*lucas_number1(n, 5, -5) for n in (0..40)] # G. C. Greubel, Sep 06 2021

CROSSREFS

Cf. A057088.

Sequence in context: A098212 A002050 A047782 * A200031 A216689 A297589

Adjacent sequences:  A106562 A106563 A106564 * A106566 A106567 A106568

KEYWORD

nonn,easy

AUTHOR

Roger L. Bagula, May 30 2005

EXTENSIONS

Name changed by G. C. Greubel, Sep 06 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 2 23:51 EDT 2022. Contains 357230 sequences. (Running on oeis4.)