login
A374984
a(n) = (1/4)*Product_{k=0..n} F(k)+4, where F=A000045 (Fibonacci numbers).
0
1, 5, 25, 150, 1050, 9450, 113400, 1927800, 48195000, 1831410000, 108053190000, 10048946670000, 1487244107160000, 352476853396920000, 134293681144226520000, 82456320222555083280000, 81714213340552087530480000, 130824455558223892136298480000
OFFSET
0,2
COMMENTS
Trivially, a(n+1)/a(n) is an integer for n>=0, so (a(n)) is a divisibility sequence.
MATHEMATICA
q[n_] := Fibonacci[n]
p[n_] := Product[q[k] + 4, {k, 0, n}]
Table[(1/4)*Simplify[p[n]], {n, 0, 20}]
CROSSREFS
Cf. A000045.
Sequence in context: A047782 A106565 A200031 * A216689 A297589 A092166
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 04 2024
EXTENSIONS
Definition corrected by Georg Fischer, Aug 19 2024
STATUS
approved