

A216321


phi(delta(n)), n >= 1, with phi = A000010 (Euler's totient) and delta = A055034 (degree of minimal polynomials with coefficients given in A187360).


2



1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 4, 2, 6, 4, 2, 4, 10, 4, 4, 4, 6, 4, 6, 4, 8, 8, 4, 8, 4, 4, 6, 6, 4, 8, 8, 4, 12, 8, 4, 10, 22, 8, 12, 8, 8, 8, 12, 6, 8, 8, 6, 12, 28, 8, 8, 8, 6, 16, 8, 8, 20, 16, 10, 8, 24, 8, 12, 12, 8, 12, 8, 8, 24, 16, 18, 16, 40, 8, 16, 12
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,7


COMMENTS

If n belongs to A206551 (cyclic multiplicative group Modd n) then there exist precisely a(n) primitive roots Modd n. For these n values the number of entries in row n of the table A216319 with value delta(n) (the row length) is a(n). Note that a(n) is also defined for the complementary n values from A206552 (noncyclic multiplicative group Modd n) for which no primitive root Modd n exists.
See also A216322 for the number of primitive roots Modd n.


LINKS

Table of n, a(n) for n=1..86.


FORMULA

a(n) = phi(delta(n)), n >= 1, with phi = A000010 (Euler's totient) and delta = A055034 with delta(1) = 1 and delta(n) = phi(2*n)/2 if n >= 2.


EXAMPLE

a(8) = 2 because delta(8) = 4 and phi(4) = 2. There are 2 primitive roots Modd 8, namely 3 and 5 (see the two 4s in row n=8 of A216320). 8 = A206551(8).
a(12) = 2 because delta(12) = 4 and phi(4) = 2. But there is no primitive root Modd 12, because 4 does not show up in row n=12 of A216320. 12 = A206552(1).


PROG

(PARI) a(n)=eulerphi(ceil(eulerphi(2*n)/2)) \\ Charles R Greathouse IV, Feb 21 2013


CROSSREFS

Cf. A000010, A055034, A216319, A216320, A216322, A010554 (analog in modulo n case).
Sequence in context: A122066 A053238 A227783 * A058263 A232398 A048669
Adjacent sequences: A216318 A216319 A216320 * A216322 A216323 A216324


KEYWORD

nonn


AUTHOR

Wolfdieter Lang, Sep 21 2012


STATUS

approved



