login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215367
Lengths of binary representations of prime Fibonacci numbers.
2
2, 2, 3, 4, 7, 8, 11, 15, 19, 29, 32, 57, 90, 94, 249, 299, 300, 311, 353, 394, 396, 2062, 3278, 3739, 6463, 6718, 10018, 17745, 21352, 24991, 26041, 35290, 56815, 72833, 90265, 102810, 139616, 275876, 301148, 409631, 412163, 419815, 646697, 728882, 892522, 1135784, 1251758, 1366768
OFFSET
1,1
COMMENTS
Some of the larger entries may only correspond to probable primes.
As of August 2012, the index of last provable Fibonacci prime is A001605(33)=81839, that is, a(n) corresponds to a probable prime for n>33.
LINKS
C. K. Caldwell, The Prime Glossary, Fibonacci prime
Henri & Renaud Lifchitz, Probable primes
FORMULA
EXAMPLE
Tenth prime Fibonacci number is A005478(10) = 433494437, 29 digits in the binary representation, so a(10)=29.
MATHEMATICA
Length /@ IntegerDigits[Select[Fibonacci[Range[1000]], PrimeQ[#] &], 2] (* T. D. Noe, Aug 08 2012 *)
IntegerLength[#, 2]&/@Select[Fibonacci[Range[1000]], PrimeQ] (* Harvey P. Dale, Nov 20 2021 *)
PROG
(Java)
import java.math.BigInteger;
public class A215367 {
public static void main (String[] args) {
BigInteger prpr = BigInteger.valueOf(0);
BigInteger prev = BigInteger.valueOf(1), curr;
int indices[] = {
// === insert terms of A001605 here, followed by a comma === //
-1 };
int ipos = 1, ind = indices[0];
for (long k=1; ; ++k) {
if (k==ind) {
System.out.printf("%d, ", prev.bitLength());
ind = indices[ipos++];
if (ind<0) break;
}
curr = prpr.add(prev);
prpr = prev;
prev = curr;
}
}
}
CROSSREFS
Sequence in context: A086969 A014692 A058670 * A276526 A091605 A145468
KEYWORD
nonn,base
AUTHOR
Alex Ratushnyak, Aug 08 2012
STATUS
approved