login
A215217
Smaller member of a pair of sphenic twins, consecutive integers, each the product of three distinct primes.
10
230, 285, 429, 434, 609, 645, 741, 805, 902, 969, 986, 1001, 1022, 1065, 1085, 1105, 1130, 1221, 1245, 1265, 1309, 1310, 1334, 1406, 1434, 1442, 1462, 1490, 1505, 1533, 1581, 1598, 1605, 1614, 1634, 1729, 1742, 1833, 1885, 1886, 1946, 2013, 2014, 2054, 2085
OFFSET
1,1
COMMENTS
455 is not a term of the sequence, since 455 = 5*7*13 is sphenic, i.e., the number of distinct prime factors is 3, though 456 = 2^3*3*19 has 3 distinct prime factors but is not sphenic, because the number of prime factors with repetition is 5 > 3.
LINKS
MAPLE
Sphenics:= select(t -> (map(s->s[2], ifactors(t)[2])=[1, 1, 1]), {$1..10000}):
Sphenics intersect map(`-`, Sphenics, 1); # Robert Israel, Aug 13 2014
MATHEMATICA
Select[Range[2500], (PrimeNu[#] == PrimeOmega[#] == PrimeNu[#+1] == PrimeOmega[#+1] == 3)&] (* Jean-François Alcover, Apr 11 2014 *)
SequencePosition[Table[If[PrimeNu[n]==PrimeOmega[n]==3, 1, 0], {n, 2500}], {1, 1}][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 02 2017 *)
PROG
(Haskell)
twinLow [] = []
twinLow [_] = []
twinLow (n : (m : ns))
| m == n + 1 = n : twinLow (m : ns)
| otherwise = twinLow (m : ns)
a215217 n = (twinLow a007304_list) !! (n - 1)
-- Peter Dolland, May 31 2019
(PARI) is_a033992(n) = omega(n)==3 && bigomega(n)==3
is(n) = is_a033992(n) && is_a033992(n+1) \\ Felix Fröhlich, Jun 10 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Martin Renner, Aug 06 2012
STATUS
approved