login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A291617 Numbers p_1*p_2*...*p_k such that (2^p_1-1)*(2^p_2-1)*...*(2^p_k-1) is a Poulet number (A001567), where p_i are primes and k >= 2. 1
230, 341, 1387, 2047, 2701, 3277, 4033, 4369, 4681, 5461, 7957, 8321, 10261, 13747, 14491, 15709, 18721, 19951, 23377, 31323, 31417, 31609, 31621, 35333, 38193, 42799, 49141, 49981, 60701, 60787, 65077, 65281, 80581, 83333, 85489 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Rotkiewicz (1965) proved that (2^p-1)*(2^q-1) is a Poulet number if and only if p*q is a Poulet number, where p,q are distinct primes. It follows that this sequence contains all nonsquare terms in A214305.

Generally, the sequence includes all squarefree super-Poulet numbers.

The terms n = 230, 31323, 38193, ... are not in A050217. Are there infinitely many such terms?

LINKS

Max Alekseyev, Table of n, a(n) for n = 1..66

A. Rotkiewicz, Sur les nombres pseudopremiers de la forme M_p M_q, Elemente der Mathematik 20 (1965): 108-109. (in French)

EXAMPLE

The number n = 341 = 11*31 is a term, because m = (2^11-1)*(2^31-1) = 4395899025409 is a Poulet number.

MATHEMATICA

Select[Select[Range[10^4], CompositeQ@ # && SquareFreeQ@ # &], ! PrimeQ[#] && PowerMod[2, (# - 1), #] == 1 &@ Apply[Times, Map[2^# - 1 &, FactorInteger[#][[All, 1]] ]] &] (* Michael De Vlieger, Aug 30 2017 *)

PROG

(PARI) { is_A291617(n) = my(p, m); if(isprime(n), return(0)); p=factor(n); m=prod(i=1, matsize(p)[1], (2^p[i, 1]-1)^p[i, 2]); Mod(2, m)^m==2; }

CROSSREFS

Cf. A001567, A050217, A214305.

Sequence in context: A321503 A140077 A215217 * A304389 A211711 A211716

Adjacent sequences:  A291614 A291615 A291616 * A291618 A291619 A291620

KEYWORD

nonn

AUTHOR

Max Alekseyev and Thomas Ordowski, Aug 28 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 21:52 EDT 2020. Contains 334671 sequences. (Running on oeis4.)