The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A066509 a(n) is the first of a triple of consecutive integers, each the product of three distinct primes. 13
 1309, 1885, 2013, 2665, 3729, 5133, 6061, 6213, 6305, 6477, 6853, 6985, 7257, 7953, 8393, 8533, 8785, 9213, 9453, 9821, 9877, 10281, 10945, 11605, 12453, 12565, 12801, 12857, 12993, 13053, 14133, 14313, 14329, 14465, 14817, 15085, 15265, 15805, 16113, 16133 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A subsequence of A052214 and thus of A005238. - M. F. Hasler, Jan 05 2013 Also, the start of pairs of adjacent sphenic twins, i.e., a(n) = A215217(k) such that A215217(k+1) = A215217(k)+1. Therefore these triples might be called "sphenic triples". They form a subsequence of A242606. - M. F. Hasler, May 18 2014 Minimal difference is 4 which occurs at indices n = {316, 547, 566, 604, 666, 695, 821, 874, 979, ...}. - Zak Seidov, Jul 04 2020 LINKS Harry J. Smith, Table of n, a(n) for n = 1..1000 G. L. Honaker, Jr. and C. Caldwell, Prime Curios! 1309 FORMULA a(n) == 1 (mod 4). - Zak Seidov, Mar 31 2020 EXAMPLE a(5) = 3729 because it along with 3730 and 3731 are all the product of three distinct primes. MATHEMATICA f[n_]:=Last/@FactorInteger[n]=={1, 1, 1}; lst={}; Do[If[f[n]&&f[n+1]&&f[n+2], AppendTo[lst, n]], {n, 9!}]; lst (* Vladimir Joseph Stephan Orlovsky, Mar 04 2010 *) PROG (PARI) Trip(n) = { local(f); f=factor(n); if (matsize(f)[1] != 3, return(0)); for(i=1, 3, if (f[i, 2] != 1, return(0))); return(1); } { n=0; for (m=1, 10^10, if (!Trip(m) || !Trip(m+1) || !Trip(m+2), next); write("b066509.txt", n++, " ", m); if (n==1000, return) ) } \\ Harry J. Smith, Feb 19 2010 (PARI) A066509(n, show_all=0, a=2*3*5, s=[1, 1, 1]~)={until( !n-- || !a++, until(, factor(a+2)[, 2]!=s && (a+=3) && next; factor(a+1)[, 2]!=s && (a+=2) && next; factor(a)[, 2]==s && break; factor(a+3)[, 2]==s && a++ && break; a+=4); show_all && print1(a", ")); a} \\ M. F. Hasler, Jan 05 2013 (PARI) is3dp(n)=my(f=factor(n)); matsize(f)==[3, 2]&&vecmax(f[, 2])==1 list(lim)=my(v=List(), t); forprime(p=17, lim\15, forprime(q=7, min(p-1, lim\3), forprime(r=3, min(q-1, lim\(p*q)), t=p*q*r; if(t%4==1 && is3dp(t+1) && is3dp(t+2), listput(v, t))))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jan 05 2013 CROSSREFS Cf. A005238, A052214, A215217. Sequence in context: A209853 A165936 A242606 * A248202 A256668 A205301 Adjacent sequences:  A066506 A066507 A066508 * A066510 A066511 A066512 KEYWORD nonn AUTHOR Jason Earls, Jan 04 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 28 02:52 EDT 2020. Contains 338048 sequences. (Running on oeis4.)