login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215149
a(n) = n * (1 + 2^(n-1)).
4
0, 2, 6, 15, 36, 85, 198, 455, 1032, 2313, 5130, 11275, 24588, 53261, 114702, 245775, 524304, 1114129, 2359314, 4980755, 10485780, 22020117, 46137366, 96469015, 201326616, 419430425, 872415258, 1811939355, 3758096412, 7784628253, 16106127390, 33285996575, 68719476768, 141733920801, 292057776162
OFFSET
0,2
COMMENTS
Related to Bernoulli numbers.
Essentially the same as A135854.
FORMULA
a(n) = (A157809(n) - A164555(n)) / A027642(n).
a(n) = n (the nonnegative integers A001477(n)) + n*2^(n-1) (their binomial transform A001787(n)).
a(n+1) - a(n) = 2,4,9,21,... = A001792(n) + 1.
a(n+1) - 2*a(n) = 2 before A132045(n+1).
a(n) is the binomial transform of b(n) = 0,2,2,3,4,5,... = A001477(n) with 2 instead of 1. b(n) = (A164558(n) - A027641(n))/A027642(n)?
G.f.: x*(2-6*x+5*x^2) / ( (1-x)^2*(1-2*x)^2 ). - R. J. Mathar, Aug 06 2012
E.g.f.: x*exp(x)*(1 + exp(x)). - G. C. Greubel, Jan 18 2025
a(n) = n * A094373(n). - Alois P. Heinz, Jan 18 2025
MATHEMATICA
Table[n(1+2^(n-1)), {n, 0, 40}] (* or *) LinearRecurrence[{6, -13, 12, -4}, {0, 2, 6, 15}, 40] (* Harvey P. Dale, Oct 18 2013 *)
PROG
(PARI) a(n) = n*(1+2^(n-1)) \\ Michel Marcus, Mar 10 2013
(Magma) [n*(1 + 2^(n-1)): n in [0..40]]; // G. C. Greubel, Apr 19 2018
(Python)
def A215149(n): return n*(pow(2, n)+2)//2
print([A215149(n) for n in range(41)]) # G. C. Greubel, Jan 18 2025
KEYWORD
nonn,easy,changed
AUTHOR
Paul Curtz, Aug 04 2012
STATUS
approved