|
|
A132045
|
|
Row sums of triangle A132044.
|
|
4
|
|
|
1, 2, 3, 6, 13, 28, 59, 122, 249, 504, 1015, 2038, 4085, 8180, 16371, 32754, 65521, 131056, 262127, 524270, 1048557, 2097132, 4194283, 8388586, 16777193, 33554408, 67108839, 134217702, 268435429, 536870884, 1073741795, 2147483618, 4294967265, 8589934560
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Apart from initial terms, and with a change of offset, same as A095768. - Jon E. Schoenfield, Jun 15 2017
|
|
LINKS
|
Table of n, a(n) for n=0..33.
Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
|
|
FORMULA
|
Binomial transform of (1, 1, 0, 2, 0, 2, 0, 2, 0, 2, ...).
For n>=1, a(n) = 2^n - n + 1 = A000325(n) + 1. - Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 17 2009. (Corrected by Franklin T. Adams-Watters, Jan 17 2009)
E.g.f.: U(0)- 1, where U(k) = 1 - x/(2^k + 2^k/(x - 1 - x^2*2^(k+1)/(x*2^(k+1) + (k+1)/U(k+1) ))). - Sergei N. Gladkovskii, Dec 01 2012
From Colin Barker, Mar 14 2014: (Start)
a(n) = 4*a(n-1)-5*a(n-2)+2*a(n-3) for n>3.
G.f.: -(2*x^3-2*x+1) / ((x-1)^2*(2*x-1)). (End)
a(0)=1, a(n) = 2^n - n + 1 for n > 0. - Jon E. Schoenfield, Jun 15 2017
|
|
EXAMPLE
|
a(4) = 13 = sum of row 4 terms of triangle A132044: (1 + 3 + 5 + 3 + 1).
a(4) = 13 = (1, 4, 6, 4, 1) dot (1, 1, 0, 2, 0) = (1 + 4 + 0 + 8 + 0).
|
|
PROG
|
(PARI) Vec(-(2*x^3-2*x+1)/((x-1)^2*(2*x-1)) + O(x^100)) \\ Colin Barker, Mar 14 2014
|
|
CROSSREFS
|
Cf. A095768, A132044.
Sequence in context: A274493 A324770 A075853 * A032143 A032160 A089735
Adjacent sequences: A132042 A132043 A132044 * A132046 A132047 A132048
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Gary W. Adamson, Aug 08 2007
|
|
STATUS
|
approved
|
|
|
|