login
A214622
Triangle read by rows, matrix inverse of [x^(n-k)](skp(n,x)-skp(n,x-1)+x^n) where skp denotes the Swiss-Knife polynomials A153641.
0
1, -1, 1, 3, -2, 1, -10, 9, -3, 1, 45, -40, 18, -4, 1, -256, 225, -100, 30, -5, 1, 1743, -1536, 675, -200, 45, -6, 1, -13840, 12201, -5376, 1575, -350, 63, -7, 1, 125625, -110720, 48804, -14336, 3150, -560, 84, -8, 1, -1282816, 1130625, -498240, 146412, -32256, 5670, -840, 108, -9, 1
OFFSET
0,4
FORMULA
T(n,k) = matrix inverse of A109449(n,k)*(-1)^floor((k-n+5)/2).
T(n,0) = A003704(n+1).
E.g.f.: exp(x*z)/(sech(x)+tanh(x)). - Peter Luschny, Aug 01 2012
EXAMPLE
Triangle begins:
1;
-1, 1;
3, -2, 1;
-10, 9, -3, 1;
45, -40, 18, -4, 1;
-256, 225, -100, 30, -5, 1;
1743, -1536, 675, -200, 45, -6, 1;
...
MAPLE
A214622_row := proc(n) local s, t, k;
s := series(exp(z*x)/(sech(x)+tanh(x)), x, n+2);
t := factorial(n)*coeff(s, x, n); seq(coeff(t, z, k), k=(0..n)) end:
for n from 0 to 7 do A214622_row(n) od; # Peter Luschny, Aug 01 2012
MATHEMATICA
A214622row[n_] := Module[{s, t},
s = Series[Exp[z*x]/(Sech[x] + Tanh[x]), {x, 0, n+2}];
t = n!*Coefficient[s, x, n];
Table[Coefficient[t, z, k], {k, 0, n}]];
Table[A214622row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, May 25 2024, after Peter Luschny *)
PROG
(Sage)
R = PolynomialRing(ZZ, 'x')
@CachedFunction
def skp(n, x) : # Swiss-Knife polynomials A153641.
if n == 0 : return 1
return add(skp(k, 0)*binomial(n, k)*(x^(n-k)-(n+1)%2) for k in range(n)[::2])
def A109449_signed(n, k) : return 0 if k > n else R(skp(n, x)-skp(n, x-1)+x^n)[k]
T = matrix(ZZ, 9, A109449_signed).inverse(); T
CROSSREFS
Sequence in context: A101894 A187105 A116071 * A327801 A320578 A267836
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Jul 23 2012
STATUS
approved