The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A327801 Sum T(n,k) of multinomials M(n; lambda), where lambda ranges over all partitions of n into parts incorporating k; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 7
 1, 1, 1, 3, 2, 1, 10, 9, 3, 1, 47, 40, 18, 4, 1, 246, 235, 100, 30, 5, 1, 1602, 1476, 705, 200, 45, 6, 1, 11481, 11214, 5166, 1645, 350, 63, 7, 1, 95503, 91848, 44856, 13776, 3290, 560, 84, 8, 1, 871030, 859527, 413316, 134568, 30996, 5922, 840, 108, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Here we assume that every list of parts has at least one 0 because its addition does not change the value of the multinomial. LINKS Alois P. Heinz, Rows n = 0..140, flattened Wikipedia, Multinomial coefficients Wikipedia, Partition (number theory) EXAMPLE Triangle T(n,k) begins:       1;       1,     1;       3,     2,     1;      10,     9,     3,     1;      47,    40,    18,     4,    1;     246,   235,   100,    30,    5,   1;    1602,  1476,   705,   200,   45,   6,  1;   11481, 11214,  5166,  1645,  350,  63,  7, 1;   95503, 91848, 44856, 13776, 3290, 560, 84, 8, 1;   ... MAPLE with(combinat): T:= (n, k)-> add(multinomial(add(i, i=l), l[], 0), l=              select(x-> k=0 or k in x, partition(n))): seq(seq(T(n, k), k=0..n), n=0..10); # second Maple program: b:= proc(n, i, k) option remember; `if`(n=0, 1,       `if`(i<2, 0, b(n, i-1, `if`(i=k, 0, k)))+       `if`(i=k, 0, b(n-i, min(n-i, i), k)/i!))     end: T:= (n, k)-> n!*(b(n\$2, 0)-`if`(k=0, 0, b(n\$2, k))): seq(seq(T(n, k), k=0..n), n=0..10); CROSSREFS Columns k=0-2 give: A005651, A327827, A327828. Row sums give A320566. T(2n,n) gives A266518. T(n,n-1) gives A001477. T(n+1,n-1) gives A045943. Cf. A327869. Sequence in context: A187105 A116071 A214622 * A320578 A267836 A319669 Adjacent sequences:  A327798 A327799 A327800 * A327802 A327803 A327804 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Sep 25 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 22 09:22 EST 2020. Contains 332133 sequences. (Running on oeis4.)