login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213910
Irregular triangle read by rows: T(n,k) is the number of involutions of length n that have exactly k inversions; n>=0, 0<=k<=binomial(n,2).
2
1, 1, 1, 1, 1, 2, 0, 1, 1, 3, 1, 2, 1, 1, 1, 1, 4, 3, 3, 4, 2, 4, 1, 3, 0, 1, 1, 5, 6, 5, 9, 5, 10, 5, 9, 4, 7, 3, 3, 2, 1, 1, 1, 6, 10, 9, 16, 13, 19, 17, 19, 19, 17, 19, 13, 17, 7, 13, 3, 8, 1, 4, 0, 1, 1, 7, 15, 16, 26, 29, 34, 43, 39, 54, 41, 61, 40, 62, 36, 58, 28, 47, 21, 34, 15, 21, 10, 11, 6, 4, 3, 1, 1
OFFSET
0,6
LINKS
FORMULA
Sum_{k>=0} T(n,k)*k = A211606(n).
T(n,k) = T(n-1,k) + Sum_{j=1..n-1} T(n-2,k-2*(n-j)+1) for n>=0, k>0; T(n,k) = 0 for n<0 or k<0; T(n,0) = 1 for n>=0. - Alois P. Heinz, Mar 07 2013
EXAMPLE
T(4,3) = 2 because we have: (3,2,1,4), (1,4,3,2).
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 2, 0, 1;
1, 3, 1, 2, 1, 1, 1;
1, 4, 3, 3, 4, 2, 4, 1, 3, 0, 1;
1, 5, 6, 5, 9, 5, 10, 5, 9, 4, 7, 3, 3, 2, 1, 1;
...
MAPLE
T:= proc(n) option remember; local f, g, j; if n<2 then 1 else
f, g:= [T(n-1)], [T(n-2)]; for j to 2*n-3 by 2 do
f:= zip((x, y)->x+y, f, [0$j, g[]], 0) od; f[] fi
end:
seq(T(n), n=0..10); # Alois P. Heinz, Mar 05 2013
MATHEMATICA
Needs["Combinatorica`"];
Table[Distribution[Map[Inversions, Involutions[n]], Range[0, Binomial[n, 2]]], {n, 0, 9}]//Flatten
(* Second program: *)
zip[f_, x_List, y_List, z_] := With[{m = Max[Length[x], Length[y]]}, f[PadRight[x, m, z], PadRight[y, m, z]]];
T[n_] := T[n] = Module[{f, g, j}, If[n < 2, Return@{1}, f = T[n-1]; g = T[n-2]; For[j = 1, j <= 2*n - 3, j += 2, f = zip[Plus, f, Join[Table[0, {j}], g], 0]]]; f];
Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 04 2023, after Alois P. Heinz *)
CROSSREFS
Cf. A008302 (permutations of [n] with k inversions).
Cf. A000085 (row sums), A211606, A214086 (diagonal).
Sequence in context: A124035 A204184 A157897 * A288002 A140129 A029347
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Mar 04 2013
STATUS
approved