This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A140129 a(n) = numerator of {c(n) = if n=1 then 0 else if n < 3*2^[Log2(n)-1] then (c([n/2])+c([(n+1)/2]))/2 else c(n-2^[Log2(n)])+1}. 4
 0, 0, 1, 0, 1, 1, 2, 0, 1, 1, 3, 1, 3, 2, 3, 0, 1, 1, 3, 1, 5, 3, 7, 1, 5, 3, 7, 2, 5, 3, 4, 0, 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 9, 5, 11, 3, 13, 7, 15, 2, 9, 5, 11, 3, 7, 4, 5, 0, 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,7 COMMENTS C(k) = {a(n)/A140130(n): 2^(k-1) <= n < 2^k} = nonnegative Conway numbers created on day k according to the genesis reported by Knuth. c(2^n-1) = n-1; c(2^n) = 0; c(3*2^n) = 1; c(5*2^n) = 1/2; for n>1: a(A023758(n)) = A002262(n-2) and A140130(A023758(n))=1; a(n) = a(n-2^[Log2(n))+A140130(n-2^[Log2(n)) for n with 3*2^[Log2(n)-1]<=n<2^[Log2(n)]. REFERENCES D. E. Knuth, Surreal Numbers, Addison-Wesley, Reading, 1974. LINKS R. Zumkeller, Table of n, a(n) for n = 1..8191 Wikipedia, Surreal number EXAMPLE C(1)={0}; C(2)={0,1}; C(3)={0,1/2,1,2}; C(4)={0,1/4,1/2,3/4,1,3/2,2,3}; C(5)={0,1/8,1/4,3/8,1/2,5/8,3/4,7/8,1,5/4,3/2,7/4,2,5/2,3,4}. CROSSREFS Cf. A000523, A007283. Sequence in context: A157897 A213910 A288002 * A029347 A303427 A176076 Adjacent sequences:  A140126 A140127 A140128 * A140130 A140131 A140132 KEYWORD nonn,frac,look AUTHOR Reinhard Zumkeller, May 14 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 02:35 EDT 2019. Contains 323579 sequences. (Running on oeis4.)