login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213583
Principal diagonal of the convolution array A213582.
3
1, 9, 38, 120, 327, 819, 1948, 4482, 10085, 22341, 48930, 106236, 229075, 491175, 1048184, 2227782, 4718097, 9960921, 20970910, 44039520, 92273951, 192937179, 402652308, 838859850, 1744829437, 3623877549, 7516191578, 15569255172, 32212253355, 66571991631
OFFSET
1,2
FORMULA
a(n) = 7*a(n-1) - 19*a(n-2) + 25*a(n-3) - 16*a(n-4) + 4*a(n-5).
G.f.: x*(1 + 2*x - 6*x^2) / ((1 - x)^3*(1 - 2*x)^2).
a(n) = (n+1)*(2^(n+2) - 3*n -4)/2. - Colin Barker, Nov 04 2017
E.g.f.: (4*(1+2*x)*exp(2*x) - (3*x^2+10*x+4)*exp(x))/2. - G. C. Greubel, Jul 08 2019
MATHEMATICA
(* First program *)
b[n_]:= 2^n - 1; c[n_]:= n;
T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213582 *)
r[n_]:= Table[T[n, k], {k, 40}] (* columns of antidiagonal triangle *)
Table[T[n, n], {n, 1, 40}] (* A213583 *)
s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A156928 *)
(* Second program *)
LinearRecurrence[{7, -19, 25, -16, 4}, {1, 9, 38, 120, 327}, 40] (* Harvey P. Dale, Apr 06 2013 *)
Table[(n+1)*(2^(n+2)-3*n-4)/2, {n, 40}] (* G. C. Greubel, Jul 08 2019 *)
PROG
(PARI) Vec(x*(1 + 2*x - 6*x^2) / ((1 - x)^3*(1 - 2*x)^2) + O(x^40)) \\ Colin Barker, Nov 04 2017
(PARI) vector(40, n, (n+1)*(2^(n+2) -3*n-4)/2) \\ G. C. Greubel, Jul 08 2019
(Magma) [(n+1)*(2^(n+2) -3*n-4)/2: n in [1..40]]; // G. C. Greubel, Jul 08 2019
(Sage) [(n+1)*(2^(n+2) -3*n-4)/2 for n in (1..40)] # G. C. Greubel, Jul 08 2019
(GAP) List([1..40], n-> (n+1)*(2^(n+2) -3*n-4)/2) # G. C. Greubel, Jul 08 2019
CROSSREFS
Sequence in context: A120780 A071229 A071238 * A343521 A050854 A053181
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 19 2012
STATUS
approved