login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213586
Antidiagonal sums of the convolution array A213584.
5
1, 6, 20, 51, 112, 224, 421, 758, 1324, 2263, 3808, 6336, 10457, 17158, 28036, 45675, 74256, 120544, 195485, 316790, 513116, 830831, 1344960, 2176896, 3523057, 5701254, 9225716, 14928483, 24155824, 39086048, 63243733, 102331766
OFFSET
1,2
COMMENTS
a(n) is the number of bit strings of length n+5 with the pattern 01 at least thrice, and without the pattern 110, see example. - John M. Campbell, Jan 25 2013
FORMULA
a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5).
G.f.: x*(1 + 2*x + x^2)/((1 - x - x^2)*(1 - x)^3).
a(n) = Fibonacci(n+8) - (21 + 10*n + 2*n^2). - G. C. Greubel, Jul 06 2019
EXAMPLE
From John M. Campbell, Jan 25 2013: (Start)
There are a(3) = 20 bit strings of length 3+5 with the pattern 01 at least thrice, and without the pattern 110:
00010101, 00100101, 00101001, 00101010, 00101011,
01000101, 01001001, 01001010, 01001011, 01010001,
01010010, 01010011, 01010100, 01010101, 01010111,
10010101, 10100101, 10101001, 10101010, 10101011.
(End)
MATHEMATICA
(See A213584.)
With[{F = Fibonacci}, Table[F[n+8] -(21+10*n+2*n^2), {n, 40}]] (* G. C. Greubel, Jul 06 2019 *)
PROG
(PARI) vector(40, n, fibonacci(n+8) -(21+10*n+2*n^2)) \\ G. C. Greubel, Jul 06 2019
(Magma) [Fibonacci(n+8) -(21+10*n+2*n^2): n in [1..40]]; // G. C. Greubel, Jul 06 2019
(Sage) [fibonacci(n+8) -(21+10*n+2*n^2) for n in (1..40)] # G. C. Greubel, Jul 06 2019
(GAP) List([1..40], n-> Fibonacci(n+8) -(21+10*n+2*n^2)) # G. C. Greubel, Jul 06 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 18 2012
STATUS
approved