login
A213061
Triangle of Stirling numbers of second kind (A048993) read mod 2.
1
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1
OFFSET
0
COMMENTS
Also parity of triangles A103631, A121314, A133607, A208345. - Philippe Deléham, Jun 04 2012
REFERENCES
Brand, Neal; Das, Sajal; Jacob, Tom. The number of nonzero entries in recursively defined tables modulo primes. Proceedings of the Twenty-first Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1990). Congr. Numer. 78 (1990), 47--59. MR1140469 (92h:05004).
EXAMPLE
Triangle starts:
1;
0, 1;
0, 1, 1;
0, 1, 1, 1;
0, 1, 1, 0, 1;
0, 1, 1, 1, 0, 1;
...
MATHEMATICA
Table[Mod[StirlingS2[n, k], 2], {n, 0, 13}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 03 2016 *)
PROG
(PARI) for(n=0, 22, for(k=0, n, print1(stirling(n, k, 2) % 2, ", ")); print()); \\ Michel Marcus, Apr 03 2016
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jun 03 2012
STATUS
approved