login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213061
Triangle of Stirling numbers of second kind (A048993) read mod 2.
1
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1
OFFSET
0
COMMENTS
Also parity of triangles A103631, A121314, A133607, A208345. - Philippe Deléham, Jun 04 2012
REFERENCES
Brand, Neal; Das, Sajal; Jacob, Tom. The number of nonzero entries in recursively defined tables modulo primes. Proceedings of the Twenty-first Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1990). Congr. Numer. 78 (1990), 47--59. MR1140469 (92h:05004).
EXAMPLE
Triangle starts:
1;
0, 1;
0, 1, 1;
0, 1, 1, 1;
0, 1, 1, 0, 1;
0, 1, 1, 1, 0, 1;
...
MATHEMATICA
Table[Mod[StirlingS2[n, k], 2], {n, 0, 13}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 03 2016 *)
PROG
(PARI) for(n=0, 22, for(k=0, n, print1(stirling(n, k, 2) % 2, ", ")); print()); \\ Michel Marcus, Apr 03 2016
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jun 03 2012
STATUS
approved