This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A123110 Triangle T(n,k), 0<=k<=n, read by rows given by [0,1,0,0,0,0,0,0,0,0,...] DELTA [1,0,-1,1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. 5
 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Essentially the same sequence as A114607. Also essentially the same as A023532. - R. J. Mathar, Jun 18 2008 Diagonal sums give A123108. [From Philippe Deléham, Oct 08 2009] LINKS FORMULA Sum {k,0<=k<=n} T(n,k)*x^k = A000007(n),A028310(n),A095121(n),A123109(n) for x=0,1,2,3 respectively. G.f.: (1-x+y*x^2)/(1-(1+y)*x+y*x^2). - From Philippe Deléham, Nov 01 2011 From Tom Copeland, Nov 10 2012: (Start) O.g.f. for row polynomials: 1+[t/(1-t)][1/(1-x)-1/(1-x*t)] = 1+t*x+(t+t^2)x^2+.... E.g.f. for row polynomials: 1+[t/(1-t)][e^x-e^(t*x)] = 1+t*x+(t+t^2)x^2/2+.... (End) EXAMPLE Triangle begins: 1; 0, 1; 0, 1, 1; 0, 1, 1, 1; 0, 1, 1, 1, 1; 0, 1, 1, 1, 1, 1; 0, 1, 1, 1, 1, 1, 1; 0, 1, 1, 1, 1, 1, 1, 1; 0, 1, 1, 1, 1, 1, 1, 1, 1; 0, 1, 1, 1, 1, 1, 1, 1, 1, 1; CROSSREFS Sequence in context: A213061 A110247 A114607 * A004593 A094934 A245837 Adjacent sequences:  A123107 A123108 A123109 * A123111 A123112 A123113 KEYWORD nonn,tabl AUTHOR Philippe Deléham, Sep 28 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 14:20 EDT 2019. Contains 328301 sequences. (Running on oeis4.)