login
A213060
Lucas(n) mod n, Lucas(n)= A000032(n).
3
0, 1, 1, 3, 1, 0, 1, 7, 4, 3, 1, 10, 1, 3, 14, 15, 1, 0, 1, 7, 11, 3, 1, 2, 11, 3, 22, 7, 1, 18, 1, 31, 4, 3, 4, 34, 1, 3, 17, 7, 1, 18, 1, 7, 41, 3, 1, 2, 29, 23, 4, 7, 1, 0, 44, 47, 4, 3, 1, 22, 1, 3, 41, 63, 11, 18, 1, 7, 50, 53, 1, 2, 1, 3, 64, 7, 73, 18
OFFSET
1,4
COMMENTS
a(n) = 1 for all prime values of n. Composite values for which a(n) = 1 are listed in A005845.
MAPLE
with(combinat):f:=n-> fibonacci(n):L:=n->f(2*n)/f(n): seq(L(n) mod n, n= 1..75)
# alternative
A213060 := proc(n::integer)
modp(A000032(n), n) ;
end proc:
seq(A213060(n), n=1..100) ; # R. J. Mathar, Oct 02 2019
MATHEMATICA
Table[Mod[LucasL[n], n], {n, 100}] (* T. D. Noe, Jun 06 2012 *)
PROG
(Magma) [Lucas(n) mod (n) : n in [1..120]]; // Vincenzo Librandi, Nov 19 2015
CROSSREFS
Cf. A002708 (Fibonacci(n) mod n).
Sequence in context: A318507 A055807 A364285 * A272008 A054024 A144644
KEYWORD
nonn,easy
AUTHOR
Gary Detlefs, Jun 03 2012
STATUS
approved