OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/8) * eta(q^2)^12 / (eta(q)^5 * eta(q^4)^4) in powers of q.
Expansion of q^(-1/16) times theta series of b.c.c. lattice with respect to point [0, 0, 1/4] in powers of q^(1/2).
Euler transform of period 4 sequence [ 5, -7, 5, -3, ...].
6 * a(n) = A005875(8*n + 1).
EXAMPLE
a(0) = 1 since the norm squared of point [0, 0, 0] with respect to [0, 0, 1/4] is 1/16 = 1/16 + 1/2*0.
a(1) = 5 since the norm squared of points [-1/2, -1/2, -1/2], [-1/2, 1/2, -1/2], [0, 0, -1], [1/2, -1/2, -1/2], [1/2, 1/2, -1/2] with respect to [0, 0, 1/4] is 9/16 = 1/16 + 1/2*1.
1 + 5*x + 8*x^2 + 5*x^3 + 8*x^4 + 16*x^5 + 9*x^6 + 8*x^7 + 16*x^8 + 8*x^9 + ...
q + 5*q^9 + 8*q^17 + 5*q^25 + 8*q^33 + 16*q^41 + 9*q^49 + 8*q^57 + 16*q^65 + ...
MATHEMATICA
CoefficientList[QPochhammer[q^2]^12/(QPochhammer[q]^5*QPochhammer[q^4]^4) + O[q]^70, q] (* Jean-François Alcover, Nov 05 2015 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^12 / (eta(x + A)^5 * eta(x^4 + A)^4), n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jun 03 2012
STATUS
approved