The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A212710 Smallest number k such that the difference between the greatest prime divisor of k^2+1 and the sum of the other prime distinct divisors equals n. 1
 411, 1, 3, 447, 2, 57, 212, 8, 307, 13, 5, 38, 319, 99, 3310, 70, 4, 242, 132, 50, 73, 17, 192, 12, 133, 3532, 41, 22231, 999, 43, 172, 68, 83, 11878, 294, 30, 6, 111, 9, 776, 2059, 922, 818, 46, 1183, 23, 216, 182, 557, 2010, 1818, 3323, 945, 512, 568, 76 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS EXAMPLE a(1) = 411 because 411^2+1 = 2 * 13 * 73 * 89  and 89 - (2 + 13 + 73) = 89 - 88 = 1. MAPLE A212710 := proc(n)     local fs, gpf, opf, k ;     for k from 1 do         fs := numtheory[factorset](k^2+1) ;         gpf := max(op(fs)) ;         opf := add( f, f=fs)-gpf ;         if gpf-opf = n then             return k;         end if;     end do: end proc: seq(A212710(n), n=1..50) ; # R. J. Mathar, Nov 14 2014 MATHEMATICA lst={}; Do[k=1; [While[!2*FactorInteger[k^2+1][[-1, 1]]-Total[Transpose[FactorInteger[k^2+1]][[1]]]==n, k++]]; AppendTo[lst, k], {n, 0, 60}]; lst (* Michel Lagneau, Oct 28 2014 *) PROG (PARI) a(n) = {k = 1; ok = 0; while (!ok, f = factor(k^2+1); nbp = #f~; ok = (f[nbp, 1] - sum(i=1, nbp-1, f[i, 1]) == n); if (!ok, k++); ); k; } \\ Michel Marcus, Nov 09 2014 CROSSREFS Cf. A182011, A014442, A193462. Sequence in context: A179129 A176598 A146075 * A187991 A090123 A055018 Adjacent sequences:  A212707 A212708 A212709 * A212711 A212712 A212713 KEYWORD nonn AUTHOR Michel Lagneau, May 24 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 17:14 EST 2020. Contains 338641 sequences. (Running on oeis4.)