OFFSET
1,1
COMMENTS
This is to A137530 (primes of form 1+5n^2) as semiprimes A001358 are to primes A000040. Since Z[sqrt(-5)] is not a unique factorization domain, some numbers of form 1+5n^2 are primes in Z but composite in Z[sqrt(-5)]; some values in this sequence are semiprimes in Z but have a different number than 2 of prime factors in Z[sqrt(-5)].
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
FORMULA
EXAMPLE
a(6) = 721 = 1 + 5*(12^2) = 7 * 103.
MATHEMATICA
SemiPrimeQ[n_Integer] := If[Abs[n] < 2, False, (2 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; Select[Table[5*n^2 + 1, {n, 200}], SemiPrimeQ] (* T. D. Noe, May 24 2012 *)
Select[Table[5*n^2 + 1, {n, 180}], PrimeOmega[#] == 2&] (* Vincenzo Librandi, Sep 22 2012 *)
PROG
(Magma) IsSemiprime:= func<n | &+[d[2]: d in Factorization(n)] eq 2>; [s: n in [1..180] | IsSemiprime(s) where s is 5*n^2 + 1]; // Vincenzo Librandi, Sep 22 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, May 24 2012
EXTENSIONS
Extended by T. D. Noe, May 24 2012
STATUS
approved