login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211630
Number of ordered triples (w,x,y) with all terms in {-n, ..., -1, 1, ..., n} and 5w + x + y > 0.
2
0, 4, 32, 106, 252, 495, 855, 1359, 2029, 2891, 3970, 5286, 6866, 8732, 10910, 13425, 16297, 19553, 23215, 27309, 31860, 36888, 42420, 48478, 55088, 62275, 70059, 78467, 87521, 97247, 107670, 118810, 130694, 143344, 156786, 171045, 186141, 202101, 218947
OFFSET
0,2
COMMENTS
For a guide to related sequences, see A211422.
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-5) - 3*a(n-6) + 3*a(n-7) - a(n-8) for n > 7.
G.f.: x*(4 + 20*x + 22*x^2 + 26*x^3 + 25*x^4 + 16*x^5 + 7*x^6) / ((1 - x)^4*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, Dec 05 2017
MATHEMATICA
t = Compile[{{u, _Integer}},
Module[{s = 0}, (Do[If[5 w + x + y > 0,
s = s + 1], {w, #}, {x, #}, {y, #}] &[
Flatten[{Reverse[-#], #} &[Range[1, u]]]]; s)]];
Map[t[#] &, Range[0, 60]] (* A211630 *)
FindLinearRecurrence[%]
(* Peter J. C. Moses, Apr 13 2012 *)
LinearRecurrence[{3, -3, 1, 0, 1, -3, 3, -1}, {0, 4, 32, 106, 252, 495, 855, 1359}, 36] (* Ray Chandler, Aug 02 2015 *)
PROG
(PARI) concat(0, Vec(x*(4 + 20*x + 22*x^2 + 26*x^3 + 25*x^4 + 16*x^5 + 7*x^6) / ((1 - x)^4*(1 + x + x^2 + x^3 + x^4)) + O(x^40))) \\ Colin Barker, Dec 05 2017
CROSSREFS
Cf. A211422.
Sequence in context: A108914 A052469 A211625 * A211626 A211627 A033430
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 17 2012
STATUS
approved