login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210763
Tetrahedron T(j,n,k) in which the slice j is a finite triangle read by rows T(n,k) which lists the sums of the columns of the shell model of partitions with n shells.
2
1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 2, 2, 3, 1, 1, 2, 5, 1, 1, 2, 2, 2, 3, 2, 2, 3, 5, 1, 1, 1, 2, 7, 1, 1, 2, 2, 2, 3, 3, 3, 3, 5, 3, 3, 4, 4, 7, 1, 1, 1, 2, 4, 11, 1, 1, 2, 2, 2, 3, 3, 3, 3, 5, 4, 4, 5, 4, 7, 3, 3, 3, 5, 6, 11, 1, 1, 1, 1, 2, 4, 15
OFFSET
1,4
EXAMPLE
--------------------------------------------------------
Illustration of first five A210952
slices of the tetrahedron Row sum
--------------------------------------------------------
. 1, 1
. 1, 1
. 1, 2, 3
. 1, 1
. 1, 2, 3
. 1, 1, 3, 5
. 1, 1
. 1, 2, 3
. 2, 2, 3, 7
. 1, 1, 2, 5, 9
. 1, 1
. 1, 2, 3
. 2, 2, 3, 7
. 2, 2, 3, 5, 12
. 1, 1, 1, 2, 7, 12
--------------------------------------------------------
. 1, 2, 2, 3, 3, 3, 5, 5, 5, 5, 7, 7, 7, 7, 7,
Each column sum in the slice j is equal to A000041(j).
.
Also this sequence can be written as a triangle read by rows in which each row is a flattened triangle. The sequence begins:
1;
1,1,2;
1,1,2,1,1,3;
1,1,2,2,2,3,1,1,2,5;
1,1,2,2,2,3,2,2,3,5,1,1,1,2,7;
1,1,2,2,2,3,3,3,3,5,3,3,4,4,7,1,1,1,2,4,11;
1,1,2,2,2,3,3,3,3,5,4,4,5,4,7,3,3,3,5,6,11,1,1,1,1,2,4,15;
Row n has length A000217(n). Row sums give A066186. Right border gives A000041(n), n >= 1.
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Apr 24 2012
STATUS
approved