|
|
A210764
|
|
Square array T(n,k), n>=0, k>=0, read by antidiagonals in which column k gives the partial sums of column k of A144064.
|
|
3
|
|
|
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 7, 8, 4, 1, 1, 12, 18, 13, 5, 1, 1, 19, 38, 35, 19, 6, 1, 1, 30, 74, 86, 59, 26, 7, 1, 1, 45, 139, 194, 164, 91, 34, 8, 1, 1, 67, 249, 415, 416, 281, 132, 43, 9, 1, 1, 97, 434, 844, 990, 787, 447, 183, 53, 10, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
It appears that row 2 is A034856.
Observation:
Column 1 is the EULER transform of 2,1,1,1,1,1,1,1...
Column 2 is the EULER transform of 3,2,2,2,2,2,2,2...
|
|
LINKS
|
Alois P. Heinz, Rows n = 0..140, flattened
|
|
EXAMPLE
|
Array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
1, 4, 8, 13, 19, 26, 34, 43, 53,
1, 7, 18, 35, 59, 91, 132, 183,
1, 12, 38, 86, 164, 281, 447,
1, 19, 74, 194, 416, 787,
1, 30, 139, 415, 990,
1, 45, 249, 844,
1, 67, 434,
1, 97,
1,
|
|
MAPLE
|
with(numtheory):
etr:= proc(p) local b;
b:= proc(n) option remember; `if`(n=0, 1,
add(add(d*p(d), d=divisors(j))*b(n-j), j=1..n)/n)
end
end:
A:= (n, k)-> etr(j-> k +`if`(j=1, 1, 0))(n):
seq(seq(A(d-k, k), k=0..d), d=0..14); # Alois P. Heinz, May 20 2013
|
|
MATHEMATICA
|
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; A[n_, k_] := etr[Function[{j}, k + If[j == 1, 1, 0]]][n]; Table[Table[A[d-k, k], {k, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Mar 05 2015, after Alois P. Heinz *)
|
|
CROSSREFS
|
Columns (0-3): A000012, A000070, A000713, A210843.
Rows (0-1): A000012, A000027.
Main diagonal gives A303070.
Cf. A000007, A000041, A005758, A006922, A000712, A000716, A023003-A023021, A144064, A195825, A211970.
Sequence in context: A034371 A318951 A101321 * A091186 A138155 A214986
Adjacent sequences: A210761 A210762 A210763 * A210765 A210766 A210767
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Omar E. Pol, Jun 27 2012
|
|
STATUS
|
approved
|
|
|
|