login
A210590
Triangle of numbers generated by the Nekrasov-Okounkov formula.
6
1, 1, 1, 4, 5, 1, 18, 29, 12, 1, 120, 218, 119, 22, 1, 840, 1814, 1285, 345, 35, 1, 7920, 18144, 14674, 5205, 805, 51, 1, 75600, 196356, 185080, 79219, 16450, 1624, 70, 1, 887040, 2427312, 2515036, 1258628, 324569, 43568, 2954, 92, 1, 10886400, 32304240, 37012572, 21034376, 6431733, 1088409, 101178, 4974, 117, 1
OFFSET
0,4
COMMENTS
Row sums are A000712, alternating sign row sums are zero (except for first row); application of the Nekrasov-Okounkov formula; see A138782.
LINKS
FORMULA
E.g.f.: Product_{i=1..n} (1 - x^i)^(-1 - t).
EXAMPLE
Table starts as:
1;
1, 1;
4, 5, 1;
18, 29, 12, 1;
120, 218, 119, 22, 1;
840, 1814, 1285, 345, 35, 1;
7920, 18144, 14674, 5205, 805, 51, 1;
...
MATHEMATICA
w=9; MapIndexed[ CoefficientList[#1, t] Tr[#2-1]! &, CoefficientList[Series[Product[(1-x^i)^(-1-t), {i, w}], {x, 0, w}], x]];
or alternatively:
CoefficientList[#, t] & /@ Table[1/n! Tr[(NumberOfTableaux[#1]^2 Apply[Times, t + Flatten[hooklength[#1]]^2] &) /@ Partitions[n]], {n, 0, 9}]
or alternatively:
Table[1/n!Tr[NumberOfTableaux[#]^2 f[ Flatten[hooklength[#]]^2, e, k, n ]&/@ Partitions[n] ], {n, 0, 9}, {k, 0, n}]
with e and f defined as:
e[n_, v_]:= Tr[Times @@@ Select[Subsets[Table[Subscript[x, j], {j, v}]], Length[#]==n&]];
f[li_List, fun_, par_, k_]:=fun[par, k]/.Thread[Array[Subscript[x, #1]&, Length[li]]->li];
CROSSREFS
T(2n,n) gives A338755.
Sequence in context: A369950 A266699 A234937 * A108446 A283263 A109962
KEYWORD
nonn,tabl
AUTHOR
Wouter Meeussen, Mar 24 2012
STATUS
approved