OFFSET
1,1
COMMENTS
Charles R Greathouse IV observes that this is an automatic sequence in the terminology of Allouche & Shallit.
See A210582 for the obvious "symmetric" counterpart: first digit = x mod last digit. - M. F. Hasler, Jan 14 2014
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..7000
Charles R Greathouse IV, in reply to E. Angelini, Re: Divided by first digit, have last digit as remainder, SeqFan list, Mar 21 2012
MATHEMATICA
ldrQ[n_]:=Module[{idn=IntegerDigits[n], f, l}, f=First[idn]; l=Last[idn]; Mod[n, f]==l]; Select[Range[10000], ldrQ] (* Harvey P. Dale, Mar 21 2012 *)
PROG
(PARI) is_A210589(x)=x%(x\10^(#Str(x)-1))==x%10
(Magma) [ n: n in [1..249] | n mod d[#d] eq d[1] where d is Intseq(n) ]; // Bruno Berselli, Mar 23 2012
(Python)
def ok(n): s = str(n); return n > 0 and n%int(s[0]) == int(s[-1])
print([k for k in range(242) if ok(k)]) # Michael S. Branicky, Oct 20 2021
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Eric Angelini (idea) and M. F. Hasler, Mar 23 2012
STATUS
approved