login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108446
Triangle read by rows: T(n,k) is number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1) and have k peaks of the form ud.
2
1, 1, 1, 4, 5, 1, 20, 32, 13, 1, 113, 223, 135, 26, 1, 688, 1620, 1300, 412, 45, 1, 4404, 12064, 12050, 5350, 1030, 71, 1, 29219, 91335, 109134, 62450, 17575, 2247, 105, 1, 199140, 699689, 973077, 682234, 254625, 49210, 4438, 148, 1, 1385904, 5407744
OFFSET
0,4
COMMENTS
Row sums yield A027307. Column 0 yields A108447. T(n,n-1) = A008778(n-1) = n(n^2+6n-1)/6. Number of ud peaks in all paths from (0,0) to (3n,0) is given by A108448.
LINKS
Emeric Deutsch, Problem 10658: Another Type of Lattice Path, American Math. Monthly, 107, 2000, 368-370.
FORMULA
T(n,k) = (1/n) binomial(n, k)*sum(binomial(n-k,j)*binomial(n+2j,k+j-1), j=0..n-k).
G.f.: G = G(t,z) satisfies G = 1+z(G-1+t)G+zG^3.
EXAMPLE
T(2,1) = 5 because we have udUdd, uudd, Uddud, Ududd and Uuddd.
Triangle begins:
1;
1,1;
4,5,1;
20,32,13,1;
113,223,135,26,1;
MAPLE
T:=proc(n, k) if n=0 and k=0 then 1 elif n=0 then 0 elif k=n then 1 elif k=n then 1 else (1/n)*binomial(n, k)*sum(binomial(n-k, j)*binomial(n+2*j, k+j-1), j=0..n-k) fi end: for n from 0 to 9 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
MATHEMATICA
T[0, 0] = 1; T[n_, k_] := (1/n) Binomial[n, k]*Sum[Binomial[n-k, j]* Binomial[n+2j, k+j-1], {j, 0, n-k}];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 19 2018 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jun 10 2005
STATUS
approved