login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A208932 Triangle of coefficients of polynomials v(n,x) jointly generated with A208932; see the Formula section. 3
1, 3, 2, 5, 8, 4, 7, 22, 24, 8, 9, 48, 84, 60, 16, 11, 90, 228, 264, 148, 32, 13, 152, 528, 876, 772, 348, 64, 15, 238, 1092, 2424, 2992, 2112, 804, 128, 17, 352, 2072, 5896, 9568, 9392, 5548, 1820, 256, 19, 498, 3672, 13008, 26648, 34080, 27780 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Alternating row sums: 1,1,1,1,1,1,1,1,1,1,1,1,1,...

For a discussion and guide to related arrays, see A208510.

LINKS

Table of n, a(n) for n=1..52.

FORMULA

u(n,x)=u(n-1,x)+2x*v(n-1,x),

v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1,

where u(1,x)=1, v(1,x)=1.

EXAMPLE

First five rows:

1

3...2

5...8....4

7...22...24...8

9...48...84...60...16

First five polynomials v(n,x):

1

3 + 2x

5 + 8x + 4x^2

7 + 22x + 24x^2 + 8x^3

9 + 48x + 84x^2 + 60x^3 + 16x^4

MATHEMATICA

u[1, x_] := 1; v[1, x_] := 1; z = 16;

u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];

v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;

Table[Expand[u[n, x]], {n, 1, z/2}]

Table[Expand[v[n, x]], {n, 1, z/2}]

cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

TableForm[cu]

Flatten[%]    (* A208931 *)

Table[Expand[v[n, x]], {n, 1, z}]

cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

TableForm[cv]

Flatten[%]    (* A208932 *)

CROSSREFS

Cf. A208930, A208510.

Sequence in context: A249741 A246275 A209757 * A189951 A209776 A019594

Adjacent sequences:  A208929 A208930 A208931 * A208933 A208934 A208935

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling, Mar 04 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 04:57 EDT 2019. Contains 328145 sequences. (Running on oeis4.)