login
A189951
T(n,k)=1/4 the number of arrangements of n+1 nonzero numbers x(i) in -k..k with the sum of sign(x(i))*(|x(i)| mod x(i+1)) equal to zero
16
1, 3, 2, 5, 8, 4, 8, 15, 22, 8, 10, 29, 63, 72, 16, 14, 39, 159, 384, 280, 32, 16, 61, 306, 1246, 2393, 1152, 64, 20, 75, 542, 3247, 9884, 13569, 4632, 128, 23, 103, 889, 6733, 31284, 73992, 72744, 17888, 256, 27, 124, 1350, 13034, 77459, 280284, 542353
OFFSET
1,2
COMMENTS
Table starts
...1......3........5.........8.........10..........14..........16...........20
...2......8.......15........29.........39..........61..........75..........103
...4.....22.......63.......159........306.........542.........889.........1350
...8.....72......384......1246.......3247........6733.......13034........22220
..16....280.....2393......9884......31284.......77459......168737.......327880
..32...1152....13569.....73992.....280284......839968.....2095080......4678100
..64...4632....72744....542353....2514945.....9133420....26586582.....68081570
.128..17888...393006...4014514...23257218...101599137...346371666...1012894742
.256..67232..2206620..30195535..219695998..1148390301..4569825052..15245829657
.512.251136.12731028.229483051.2090461716.13075280021.60616719909.230937539015
LINKS
EXAMPLE
Some solutions with n=5 k=3
.-2...-1...-2...-2...-2....2...-3...-2....1....3....2....2....2....3...-3...-3
.-2...-3....3....1....2....1....1...-1...-2...-3....1...-3....2....2....3...-2
.-2....3...-2....1...-3....3....2...-1...-2....2....3...-3....2...-2...-2...-2
.-1...-1....1....1...-2...-1...-1...-2...-1....3...-1....2...-1....3....3....1
..3....1....2...-1...-1...-3....3....1...-2...-2...-2...-1....3....2....1....2
.-2....2....2...-1...-3....1....1...-2....2...-3....1...-2...-2....2...-3....1
CROSSREFS
Row 1 is A006218
Sequence in context: A246275 A209757 A208932 * A209776 A019594 A085167
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin May 02 2011
STATUS
approved