This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206918 Sum of binary palindromes p < 2^n. 2
 0, 1, 4, 16, 40, 136, 328, 1096, 2632, 8776, 21064, 70216, 168520, 561736, 1348168, 4493896, 10785352, 35951176, 86282824, 287609416, 690262600, 2300875336, 5522100808, 18407002696, 44176806472, 147256021576, 353414451784, 1178048172616, 2827315614280 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Partial sums of A206917. Partial sums of A052955(n) terms of A006995; for example: A052955(4)=7, the sum of the first 7 terms of A006995 is 0+1+3+5+7+15+17=40 which equals a(4). LINKS FORMULA a(n) = sum(k=0..n, A206917(k)). a(n) = sum(k=1..A052955(n), A006995(k)). a(n) = sum(k=1..(1/2)*(5-(-1)^n)*2^floor(n/2)-1, A006995(k)). a(n) = (8/7)*((3/4)*((4-(-1)^n)/(3+(-1)^n))*2^(3*floor(n/2))-1). G.f.: x*(1+3*x+4*x^2)/((x-1)*(8*x^2-1)). - Alois P. Heinz, Feb 28 2012 EXAMPLE a(0) = 0, since p=0 is the only binary palindrome p<2^0; a(3) = 16, since p=0, 1, 3, 5, 7 are the only binary palindromes < 2^3 and 0+1+3+5+7=16. CROSSREFS Cf. A006995, A206820. See A016116 for the number of binary palindromes between 2^(n-1) and 2^n. See A052995 for the number of binary palindromes < 2^n. See A206917 for the sum of binary palindromes between 2^(n-1) and 2^n. Sequence in context: A220499 A110477 A007057 * A056373 A018828 A323847 Adjacent sequences:  A206915 A206916 A206917 * A206919 A206920 A206921 KEYWORD nonn,easy AUTHOR Hieronymus Fischer, Feb 18 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 01:40 EDT 2019. Contains 328025 sequences. (Running on oeis4.)