OFFSET
1,1
COMMENTS
For a guide to related sequences, see A205840.
EXAMPLE
The first six terms match these differences:
s(5)-s(2) = 8-2 = 6 = 6*1
s(6)-s(1) = 13-1 = 12 = 6*2
s(7)-s(3) = 21-3 = 18 = 6*3
s(9)-s(1) = 55-1 = 54 = 6*9
s(9)-s(6) = 55-13 = 42 = 6*7
s(10)-s(4) = 89-5 = 84 =6*14
MATHEMATICA
s[n_] := s[n] = Fibonacci[n + 1]; z1 = 500; z2 = 60;
f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2];
Table[s[n], {n, 1, 30}]
u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
Table[u[m], {m, 1, z1}] (* A204922 *)
v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
d[n_] := d[n] = Delete[w[n], Position[w[n], 0]]
c = 6; t = d[c] (* A205856 *)
k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2]
j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2
Table[k[n], {n, 1, z2}] (* A205857 *)
Table[j[n], {n, 1, z2}] (* A205858 *)
Table[s[k[n]]-s[j[n]], {n, 1, z2}] (* A205859 *)
Table[(s[k[n]]-s[j[n]])/c, {n, 1, z2}] (* A205860 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 02 2012
STATUS
approved