login
A191850
Ordered sums f+4*g, where f and g are Fibonacci numbers (A000045).
5
5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 25, 28, 29, 33, 34, 35, 37, 38, 40, 41, 42, 45, 46, 53, 54, 55, 57, 59, 60, 63, 65, 66, 67, 73, 75, 85, 86, 87, 89, 92, 93, 97, 101, 105, 107, 109, 118, 121, 137, 138, 139, 141, 144, 148, 149, 152
OFFSET
1,1
MATHEMATICA
c = 1; d = 4; f[n_] := Fibonacci[n];
g[n_] := c*f[n]; h[n_] := d*f[n];
t[i_, j_] := h[i] + g[j];
u = Table[t[i, j], {i, 1, 20}, {j, 1, 20}];
v = Union[Flatten[u ]] (* A191850 *)
t1[i_, j_] := If[g[i] - h[j] > 0, g[i] - h[j], 0]
u1 = Table[t1[i, j], {i, 1, 20}, {j, 1, 20}];
v1 = Union[Flatten[u1 ]] (* A191851: f(i)-4*f(j) *)
g1[n_] := d*f[n]; h1[n_] := c*f[n];
t2[i_, j_] := If[g1[i] - h1[j] > 0, g1[i] - h1[j], 0]
u2 = Table[t2[i, j], {i, 1, 20}, {j, 1, 20}];
v2 = Union[Flatten[u2 ]] (* A191852: 4*f(i)-f(j) *)
v3 = Union[v1, v2] (* A191853 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 17 2011
STATUS
approved