login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205601
Goldbach's problem extended to division: number of decompositions of 2n into the floor of unordered ratios of two primes, floor(q/p) = 2n, where p < 2n < q.
1
0, 1, 3, 5, 4, 5, 10, 5, 10, 16, 12, 17, 18, 16, 19, 27, 23, 22, 34, 27, 34, 39, 39, 45, 51, 41, 50, 51, 44, 57, 68, 71, 63, 74, 63, 76, 87, 84, 89, 104, 94, 108, 111, 99, 117, 116, 120, 104, 126, 114, 133, 146, 149, 146, 166, 148, 190, 178, 182, 170, 179, 173
OFFSET
1,3
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
For n = 3, a(n) = 3 because 6 is the floor of 13/2, 19/3, and 31/5. - T. D. Noe, Jan 31 2012
MATHEMATICA
Table[Length[Flatten[Table[Select[2*n*p + Range[p - 1], PrimeQ], {p, Prime[Range[PrimePi[2*n - 1]]]}]]], {n, 62}] (* T. D. Noe, Jan 31 2012 *)
PROG
(C++) #include <iostream>
using namespace std;
int main() //C++ code for the first 20 even integers >= 2
//where floor(q/p) = 2n, p<2n<q, by James D. Klein
{ bool a[2000]; //Initialize array p with primes
int p[304];
int n=2000, i=0;
a[0] = a[1] = false;
for(int j=2; j<n; j++) a[j] = true;
for(int j=2; j<=n/2; j++)
for(int k=2; k<=n/j; k++)
a[j*k] = false;
for(int j=2; j<n; j++)
if(a[j]) p[i++]=j;
int count, istart = 0; //Generate the decompositions
for(int n=1; n<=20; n++)
{ while(2*n>p[istart]) istart++;
count = 0;
for(int j=0; p[j]<2*n; j++)
for(int i=istart; p[i]<(p[j]+1)*2*n; i++)
if(p[i]/p[j]==2*n)count++;
cout << n << ". " << count << endl;
}
return 0;
}
(PARI) a(n)=n*=2; my(s, t); forprime(p=2, n-1, t=n*p; while(n==(t=nextprime(t+1))\p, s++)); s \\ Charles R Greathouse IV, Jan 30 2012
CROSSREFS
Sequence in context: A206035 A200100 A057759 * A021286 A200324 A063259
KEYWORD
nonn
AUTHOR
James D. Klein, Jan 29 2012
EXTENSIONS
a(21)-a(62) from Charles R Greathouse IV, Jan 31 2012
STATUS
approved