login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200324 Floor(10*(sqrt(prime(n+1))-sqrt(prime(n)))). 2
3, 5, 4, 6, 2, 5, 2, 4, 5, 1, 5, 3, 1, 2, 4, 4, 1, 3, 2, 1, 3, 2, 3, 4, 2, 0, 1, 0, 1, 6, 1, 2, 0, 4, 0, 2, 2, 1, 2, 2, 0, 3, 0, 1, 0, 4, 4, 1, 0, 1, 1, 0, 3, 1, 1, 1, 0, 1, 1, 0, 2, 4, 1, 0, 1, 3, 1, 2, 0, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 0, 2, 0, 1, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

If Andrica's conjecture is true, a(n) is at most 1 when n gets very large.

LINKS

Arkadiusz Wesolowski, Table of n, a(n) for n = 1..10000

Carlos Rivera, Conjecture 8

Eric Weisstein's World of Mathematics, Andrica's Conjecture

Marek Wolf, A Note on the Andrica Conjecture (arXiv:1010.3945)

FORMULA

a(n) = floor(10*(sqrt(A000040(n+1))-sqrt(A000040(n)))).

EXAMPLE

a(9) = 5 because 10*(sqrt(29)-sqrt(23)) = 5.8933328382....

MATHEMATICA

Table[Floor[10*(Sqrt[Prime[n + 1]] - Sqrt[Prime[n]])], {n, 100}]

Floor[10(Sqrt[Last[#]]-Sqrt[First[#]])]&/@Partition[Prime[Range[90]], 2, 1] (* Harvey P. Dale, Aug 24 2012 *)

CROSSREFS

Cf. A000040, A079063, A200474.

Sequence in context: A057759 A205601 A021286 * A063259 A064425 A094761

Adjacent sequences:  A200321 A200322 A200323 * A200325 A200326 A200327

KEYWORD

nonn

AUTHOR

Arkadiusz Wesolowski, Nov 18 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 15:24 EST 2016. Contains 278750 sequences.