This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200324 a(n) = floor(10*(sqrt(prime(n+1)) - sqrt(prime(n)))). 2
 3, 5, 4, 6, 2, 5, 2, 4, 5, 1, 5, 3, 1, 2, 4, 4, 1, 3, 2, 1, 3, 2, 3, 4, 2, 0, 1, 0, 1, 6, 1, 2, 0, 4, 0, 2, 2, 1, 2, 2, 0, 3, 0, 1, 0, 4, 4, 1, 0, 1, 1, 0, 3, 1, 1, 1, 0, 1, 1, 0, 2, 4, 1, 0, 1, 3, 1, 2, 0, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 0, 2, 0, 1, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS If Andrica's conjecture is true, a(n) is at most 1 when n gets very large. LINKS Arkadiusz Wesolowski, Table of n, a(n) for n = 1..10000 Carlos Rivera, Conjecture 8 Eric Weisstein's World of Mathematics, Andrica's Conjecture Marek Wolf, A Note on the Andrica Conjecture, arXiv:1010.3945 [math.NT], 2010. FORMULA a(n) = floor(10*(sqrt(A000040(n+1)) - sqrt(A000040(n)))). EXAMPLE a(9) = 5 because 10*(sqrt(29) - sqrt(23)) = 5.8933328382.... MAPLE A200324:=n->floor(10*(sqrt(ithprime(n+1))-sqrt(ithprime(n)))): seq(A200324(n), n=1..200); # Wesley Ivan Hurt, Jan 19 2017 MATHEMATICA Table[Floor[10*(Sqrt[Prime[n + 1]] - Sqrt[Prime[n]])], {n, 100}] Floor[10(Sqrt[Last[#]]-Sqrt[First[#]])]&/@Partition[Prime[Range[90]], 2, 1] (* Harvey P. Dale, Aug 24 2012 *) CROSSREFS Cf. A000040, A079063, A200474. Sequence in context: A057759 A205601 A021286 * A063259 A064425 A094761 Adjacent sequences:  A200321 A200322 A200323 * A200325 A200326 A200327 KEYWORD nonn,easy,changed AUTHOR Arkadiusz Wesolowski, Nov 18 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.