|
|
A204267
|
|
Symmetric matrix: f(i,j)=(i+j+1 mod 3), by antidiagonals.
|
|
3
|
|
|
0, 1, 1, 2, 2, 2, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
A block matrix over {0,1,2}. See A204263 for a guide to related matrices and permanents.
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
|
|
EXAMPLE
|
Northwest corner:
0 1 2 0 1 2
1 2 0 1 2 0
2 0 1 2 0 1
0 1 2 0 1 2
1 2 0 1 2 0
2 0 1 2 0 1
|
|
MATHEMATICA
|
f[i_, j_] := Mod[i + j + 1, 3];
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[8]] (* 8x8 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 14}, {i, 1, n}]] (* A204267 *)
Permanent[m_] :=
With[{a = Array[x, Length[m]]},
Coefficient[Times @@ (m.a), Times @@ a]];
Table[Permanent[m[n]], {n, 1, 22}] (* A204268 *)
|
|
CROSSREFS
|
Cf. A204268.
Sequence in context: A180472 A308583 A093315 * A237452 A132784 A180834
Adjacent sequences: A204264 A204265 A204266 * A204268 A204269 A204270
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Clark Kimberling, Jan 15 2012
|
|
STATUS
|
approved
|
|
|
|