OFFSET
1,2
COMMENTS
Compare g.f. to the Lambert series identity: Sum_{n>=1} x^n/(1-x^n) = Sum_{n>=1} tau(n)*x^n.
Related identities:
(1) Sum_{n>=1} n^k*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} sigma_{k}(n)*Pell(n)*x^n for k>=0.
(2) Sum_{n>=1} phi(n)*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} n*Pell(n)*x^n.
(3) Sum_{n>=1} moebius(n)*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) = x.
(4) Sum_{n>=1} lambda(n)*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} Pell(n^2)*x^(n^2).
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
FORMULA
EXAMPLE
G.f.: A(x) = 1 + 4*x + 10*x^2 + 36*x^3 + 58*x^4 + 280*x^5 + 338*x^6 +...
where A(x) = x/(1-2*x-x^2) + 2*x^2/(1-6*x^2+x^4) + 5*x^3/(1-14*x^3-x^6) + 12*x^4/(1-34*x^4+x^8) + 29*x^5/(1-82*x^5-x^10) + 70*x^6/(1-198*x^6+x^12) +...+ Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) +...
MATHEMATICA
Table[DivisorSigma[0, n] Fibonacci[n, 2], {n, 1, 50}] (* G. C. Greubel, Jan 05 2018 *)
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 14 2012
STATUS
approved