login
A202873
Symmetric matrix based on (1,3,7,15,31,...), by antidiagonals.
3
1, 3, 3, 7, 10, 7, 15, 24, 24, 15, 31, 52, 59, 52, 31, 63, 108, 129, 129, 108, 63, 127, 220, 269, 284, 269, 220, 127, 255, 444, 549, 594, 594, 549, 444, 255, 511, 892, 1109, 1214, 1245, 1214, 1109, 892, 511, 1023, 1788, 2229, 2454, 2547, 2547, 2454
OFFSET
1,2
COMMENTS
Let s=(1,3,7,15,31,...) and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A202873 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A202767 for characteristic polynomials of principal submatrices of M.
EXAMPLE
Northwest corner:
1.....3.....7...15...31.....63
3....10....24...52...108...220
7....24....59..129...269...549
15...52...129..284...594..1214
31...108..269..594..1245..2547
MATHEMATICA
s[k_] := -1 + 2^k;
U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]];
L = Transpose[U]; M = L.U; TableForm[M]
m[i_, j_] := M[[i]][[j]];
Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}]
Table[f[n], {n, 1, 12}]
Table[Sqrt[f[n]], {n, 1, 12}] (* A000295, Eulerian *)
Table[m[1, j], {j, 1, 12}] (* A000225 *)
Table[m[2, j], {j, 1, 12}] (* A053208 *)
CROSSREFS
Cf. A202767.
Sequence in context: A117525 A075149 A161618 * A157933 A350394 A013915
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Dec 26 2011
STATUS
approved