OFFSET
1,4
COMMENTS
Also the Bell transform of (n+1)!*Sum_{k=0..n}(Sum_{i=k..n-k}((-1)^(i-k)*S1(i,k)* binomial(i,n-k-i)/i!) where S1 are the Stirling cycle numbers A132393. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 15 2016
FORMULA
T(n,m) = n!/m!*sum(k=0..n-m, (sum(i=k,n-m-k, (stirling1(i,k)*binomial(i,n-m-k-i))/i!))*m^k).
EXAMPLE
Triangle begins:
1
0, 1,
6, 0, 1,
12, 24, 0, 1,
-20, 60, 60, 0, 1,
540, 240, 180, 120, 0, 1,
-882, 6300, 2100, 420, 210, 0, 1
MATHEMATICA
Table[n!/m! Sum[Sum[(StirlingS1[i, k] Binomial[i, n - m - k - i])/i!, {i, k, n - m - k}] m^k, {k, 0, n - m}], {n, 9}, {m, n}] // Flatten (* Michael De Vlieger, Jan 15 2016 *)
PROG
(Maxima)
T(n, m):=n!/m!*sum((sum((stirling1(i, k)*binomial(i, n-m-k-i))/i!, i, k, n-m-k))*m^k, k, 0, n-m);
(Sage) # uses[bell_transform from A264428]
# Adds a column 1, 0, 0, 0, ... at the left side of the triangle.
def A202189_row(n):
f = lambda n: factorial(n+1)*sum(sum((-1)^(i-k)*stirling_number1(i, k)* binomial(i, n-k-i)/factorial(i) for i in (k..n-k)) for k in (0..n))
return bell_transform(n, [f(k) for k in (0..n)])
[A202189_row(n) for n in (0..9)] # Peter Luschny, Jan 15 2016
CROSSREFS
KEYWORD
AUTHOR
Vladimir Kruchinin, Dec 13 2011
STATUS
approved