login
A200024
Decimal expansion of least x satisfying x^2 - 2*cos(x) = 4*sin(x), negated.
3
4, 2, 3, 5, 2, 7, 2, 9, 4, 7, 1, 8, 6, 9, 1, 1, 6, 1, 8, 5, 7, 4, 1, 1, 5, 5, 5, 0, 9, 6, 9, 2, 8, 8, 3, 4, 0, 2, 6, 1, 3, 5, 4, 6, 3, 4, 7, 0, 2, 5, 0, 3, 2, 6, 3, 0, 0, 0, 1, 8, 3, 3, 2, 6, 9, 9, 7, 3, 3, 7, 4, 3, 5, 0, 7, 9, 3, 7, 1, 8, 8, 5, 4, 1, 2, 8, 7, 9, 0, 5, 6, 9, 6, 1, 6, 7, 8, 1, 2
OFFSET
0,1
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: -0.42352729471869116185741155509692883402...
greatest x: 1.8307334532908635992102359547341478845366...
MATHEMATICA
a = 1; b = -2; c = 4;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.43, -.42}, WorkingPrecision -> 110]
RealDigits[r] (* A200024 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.83, 1.84}, WorkingPrecision -> 110]
RealDigits[r] (* A200025 *)
PROG
(PARI) a=1; b=-2; c=4; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018
CROSSREFS
Cf. A199949.
Sequence in context: A034927 A316257 A274791 * A247206 A228047 A188543
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 13 2011
EXTENSIONS
a(87)-a(98) corrected by G. C. Greubel, Jun 24 2018
STATUS
approved