The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200024 Decimal expansion of least x satisfying x^2 - 2*cos(x) = 4*sin(x), negated. 3
 4, 2, 3, 5, 2, 7, 2, 9, 4, 7, 1, 8, 6, 9, 1, 1, 6, 1, 8, 5, 7, 4, 1, 1, 5, 5, 5, 0, 9, 6, 9, 2, 8, 8, 3, 4, 0, 2, 6, 1, 3, 5, 4, 6, 3, 4, 7, 0, 2, 5, 0, 3, 2, 6, 3, 0, 0, 0, 1, 8, 3, 3, 2, 6, 9, 9, 7, 3, 3, 7, 4, 3, 5, 0, 7, 9, 3, 7, 1, 8, 8, 5, 4, 1, 2, 8, 7, 9, 0, 5, 6, 9, 6, 1, 6, 7, 8, 1, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A199949 for a guide to related sequences.  The Mathematica program includes a graph. LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 EXAMPLE least x:  -0.42352729471869116185741155509692883402... greatest x: 1.8307334532908635992102359547341478845366... MATHEMATICA a = 1; b = -2; c = 4; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.43, -.42}, WorkingPrecision -> 110] RealDigits[r]  (* A200024 *) r = x /. FindRoot[f[x] == g[x], {x, 1.83, 1.84}, WorkingPrecision -> 110] RealDigits[r]  (* A200025 *) PROG (PARI) a=1; b=-2; c=4; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018 CROSSREFS Cf. A199949. Sequence in context: A034927 A316257 A274791 * A247206 A228047 A188543 Adjacent sequences:  A200021 A200022 A200023 * A200025 A200026 A200027 KEYWORD nonn,cons AUTHOR Clark Kimberling, Nov 13 2011 EXTENSIONS a(87)-a(98) corrected by G. C. Greubel, Jun 24 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 25 07:42 EST 2020. Contains 331241 sequences. (Running on oeis4.)